×

zbMATH — the first resource for mathematics

Cauchy-Szegö integrals for systems of harmonic functions. (English) Zbl 0247.44006
MSC:
44A15 Special integral transforms (Legendre, Hilbert, etc.)
42B25 Maximal functions, Littlewood-Paley theory
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
31B25 Boundary behavior of harmonic functions in higher dimensions
30C40 Kernel functions in one complex variable and applications
30G20 Generalizations of Bers and Vekua type (pseudoanalytic, \(p\)-analytic, etc.)
30D55 \(H^p\)-classes (MSC2000)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A.P. Calderón and A. Zygmund , On the existence of certain singular integrals , Acta. Mathematica , 88 ( 1952 ), 85 - 139 . MR 52553 | Zbl 0047.10201 · Zbl 0047.10201
[2] G. Gasper , On the Littlewood-Paley g-function and the Lusin s-function . Trans. Amer. Math. Soc. , 34 ( 1968 ), 395 - 403 . MR 235138 | Zbl 0169.13402 · Zbl 0169.13402
[3] J. Horváth , Sur les fonctions conjuguées à plusieurs variables , Koninkl. Nederl. Akad Wetensch. Proc. Ser. A. , 56 ( 1953 ), 281 - 284 . MR 53276 | Zbl 0050.10501 · Zbl 0050.10501
[4] A. Korányi and S. Vági , Singular integrals on homogeneous spaces and some problems of classical analysis , to appear in Ann. Scuola Norm. Sup. Pisa . Numdam | Zbl 0291.43014 · Zbl 0291.43014
[5] E.M. Stein and G. Weiss , On the theory of harmonic functions of several variables. I. The theory of Hp-spaces , Acta Mathematica , 103 ( 1960 ), 25 - 62 . MR 121579 | Zbl 0097.28501 · Zbl 0097.28501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.