×

zbMATH — the first resource for mathematics

A dilation theorem for operators on Banach spaces. (English) Zbl 0247.47004
MSC:
47A20 Dilations, extensions, compressions of linear operators
47L10 Algebras of operators on Banach spaces and other topological linear spaces
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] COLOJOARA (I.) and FOIAS (C.) . - Theory of generalized spectral operators . Gordon and Breach Sci. Publ. New-York, ( 1969 ).
[2] HALMOS (P. R.) . - A Hilbert space problem book . D. Van Nostrand Company, Inc., Princeton, ( 1967 ). MR 34 #8178 | Zbl 0144.38704 · Zbl 0144.38704
[3] HOFFMAN (K.) . - Banach spaces of analytic functions . Prentice-Hall, Inc., Englewood Cliffs, ( 1962 ). MR 24 #A2844 | Zbl 0117.34001 · Zbl 0117.34001
[4] IONESCU TULCEA (C.) . - Scalar dilations and scalar extensions of operators on Banach spaces (I) . J. Math. Mech., 14 ( 1965 ), 841-865. MR 32 #1561 | Zbl 0138.39203 · Zbl 0138.39203
[5] IONESCU TULCEA (C.) et PLAFKER (S.) . - Dilatations et extensions scalaires sur les espaces de Banach . C. R. Acad. Sci. Paris, 265 ( 1967 ), 734-735. MR 37 #5700 | Zbl 0177.41103 · Zbl 0177.41103
[6] NAGY (B. Sz.) . - Appendix to ”Leçons d’Analyse Fonctionnelle” by F. Riesz and B. Sz Nagy, Paris, ( 1965 ), 439-473.
[7] STINESPRING (W. F.) . - Positive functions on C*-algebras . Proc. Amer. Math. Soc. 6, ( 1955 ), 211-216. MR 16,1033b | Zbl 0064.36703 · Zbl 0064.36703 · doi:10.2307/2032342
[8] STROESCU (E.) . - \mu -scalar dilations and \mu -scalar extensions of operators on Banach spaces . Rev. Roum. Math. Pures et Appl., XIV, N^\circ 4 ( 1969 ), 567-572. MR 40 #4793 | Zbl 0186.45401 · Zbl 0186.45401
[9] STROESCU (E.) . - a-spectral dilations for operators on Banach spaces . (to appear in Journal of Math. Anal. and Appl.). Zbl 0242.47014 · Zbl 0242.47014 · doi:10.1016/0022-247X(72)90200-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.