×

Compact operators on Orlicz spaces. (English) Zbl 0247.47015


MSC:

47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46G10 Vector-valued measures and integration
28B05 Vector-valued set functions, measures and integrals
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] Bartle , R.G. , A general bilinear vector integral , Studia Math. ( 15 ), 337 - 352 ( 1956 ). Article | MR 80721 | Zbl 0070.28102 · Zbl 0070.28102
[2] Dinculeanu , N. , Représentation intégrales des opérations linéaires (ruomain), I, II , Studii Ceret. Mat. ( 18 ), 349 - 385 , 483 - 536 ( 1966 ). Zbl 0156.14901 · Zbl 0156.14901
[3] Dinculeanu , N. , Vector Measures , Pergamon , New York , 1967 . MR 206190
[4] Dunford , N. and Schwartz , J.T. , Linear Operators, Part I , Interscience , New York , 1958 . Zbl 0084.10402 · Zbl 0084.10402
[5] Rao , M.M. , Linear funcutionals on Orlicz spaces , Nieuw Arch. Wisk. ( 12 ), 77 - 98 ( 1964 ). MR 171162 | Zbl 0129.08002 · Zbl 0129.08002
[6] Uhl , J.J. , JR. , Orlicz spaces of finitely additive set functions, linear operators, and martingales , Bull. Am. Math. Soc. ( 73 ), 116 - 119 ( 1967 ). Article | MR 209825 | Zbl 0158.13703 · Zbl 0158.13703
[7] Uhl , J.J. , JR., Orlicz spaces of finitely additive set fuctions , Studia Math , ( 29 ), 18 - 58 ( 1967 ). Article | MR 226395 | Zbl 0155.18303 · Zbl 0155.18303
[8] Vala , K. , On compact sets of compact operators , Ann. Acad. Sci. Fennicae , Series A ( I ), Math. ( 351 ), ( 1964 ). MR 169078 | Zbl 0132.09801 · Zbl 0132.09801
[9] Zaanen , A.C. , Linear Analysis , North Holland , Amsterdam , 1953 . Zbl 0053.25601 · Zbl 0053.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.