×

Lifting and projecting homeomorphisms. (English) Zbl 0247.55001


MSC:

57M05 Fundamental group, presentations, free differential calculus
57M10 Covering spaces and low-dimensional topology
20E99 Structure and classification of infinite or finite groups
Full Text: DOI

References:

[1] J. S.Birman and H. M.Hilden, Mapping class groups of closed surfaces as covering spaces. Princeton 1971. · Zbl 0217.48602
[2] J. S.Birman and D. R. J.Chillingworth, On the homeotopy group of a non-orientable surface. To appear in Proc. Cambridge Phil. Soc. · Zbl 0232.57001
[3] D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a non-orientable surface. Proc. Cambridge Phil. Soc.65, 409 (1969). · Zbl 0172.48801 · doi:10.1017/S0305004100044388
[4] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds. Ann. of Math.76, 531-540 (1962). · Zbl 0106.37102 · doi:10.2307/1970373
[5] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold. Proc. Cambridge Phil. Soc.60, 769 (1964). · Zbl 0131.20801 · doi:10.1017/S030500410003824X
[6] W. B. R. Lickorish, On the homeotopy group of a 2-manifold (corrigendum). Proc. Cambridge Phil. Soc.62, 679-681 (1966). · Zbl 0145.44102 · doi:10.1017/S0305004100040330
[7] W. B. R. Lickorish, Homeomorphism of non-orientable 2-manifold. Proc. Cambridge Phil. Soc.59, 307-317 (1963). · Zbl 0115.40801 · doi:10.1017/S0305004100036926
[8] W. B. R. Lickorish, On the homeomorphisms of a non-orientable surface. Proc. Cambridge Phil. Soc.61, 769-778 (1964). · Zbl 0131.20801 · doi:10.1017/S030500410003824X
[9] E. H.Spanier, Algebraic Topology. New York 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.