×

zbMATH — the first resource for mathematics

Permutability, distributivity of equivalence relations and direct products. (English) Zbl 0248.08004

MSC:
08A05 Structure theory of algebraic structures
08B20 Free algebras
06B05 Structure theory of lattices
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BIRKHOFF G.: Lattice theory. 3. Providence 1967. · Zbl 0153.02501
[2] DRAŠKOVIČOVÁ H.: On a generalization of permutable equivalence relations. Mat. časop. 22, 1972, 297-309. · Zbl 0252.08001
[3] DRAŠKOVIČOVÁ H.: External characterizations of subdirect representations of algebras. Acta math. Acad. scient. hung. 23, 1972, to appear. · Zbl 0248.08005
[4] GRÄTZER G.: Universal algebra. 1., Princeton 1968. · Zbl 0182.34201
[5] GRÄTZER G., SCHMIDT E. T.: Characterization of congruence lattices of abstract algebras. Acta Sci. Math. Szeged 24, 1963, 34-59. · Zbl 0117.26101
[6] HASHIMOTO J.: Direct and subdirect decompositions and congruence relations. Osaka Math. J. 9, 1957, 87-112. · Zbl 0078.01805
[7] KATRIŇÁK T.: Remarks on the W. C. Nemitz’s paper ”Semi -Boolean lattices”. Notre Dame J. of Formal Logic 11, 1970, 425-430. · Zbl 0185.03803
[8] KOLIBIAR M.: Über direkte Produkte von Relativen. Acta Fac. rerum natur. univ. Comenianae Math. 10. III, 1965, 1-8. · Zbl 0136.26002
[9] KOLIBIAR M.: Distributive sublattices of a lattice. Proc. Amer. Math. Soc. 34, 1972, 359-364 · Zbl 0248.06008
[10] PIXLEY A. F.: Distributivity and permutability of congruence relations in equational classes of algebras. Proc. Amer. Math. Soc. 14, 1963, 105-109. · Zbl 0113.24804
[11] WENZEL G. H.: Note on a subdirect representation of universal algebras. Acta math. Acad. scient. hung. 18, 1967, 329-333. · Zbl 0164.01101
[12] WILLE R.: Kongruenzklassengeometrien. Lecture Notes in Mathematics vol. 113, Springer-Verlag Berlin, New York 1970. · Zbl 0191.51403
[13] ZARISKI O., SAMUEL P.: Commutative algebra. I. Princeton 1958. · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.