×

zbMATH — the first resource for mathematics

Second-order time degenerate parabolic equations. (English) Zbl 0248.35064

MSC:
35K15 Initial value problems for second-order parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
35K99 Parabolic equations and parabolic systems
35B45 A priori estimates in context of PDEs
35J70 Degenerate elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 607 – 694. · Zbl 0182.13802
[2] D. G. Aronson, Regularity propeties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461 – 467. · Zbl 0187.03401
[3] D. G. Aronson and James Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81 – 122. · Zbl 0154.12001
[4] W. T. Ford, Elements of simulation of fluid flow in porous media, Texas Tech University Press, Lubbock, Tex., 1971. · Zbl 0279.76046
[5] Wayne T. Ford, The first initial-boundary value problem for a nonuniform parabolic equation, J. Math. Anal. Appl. 40 (1972), 131 – 137. · Zbl 0265.35042
[6] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. · Zbl 0092.31002
[7] C. Denson Hill, A sharp maximum principle for degenerate elliptic-parabolic equations., Indiana Univ. Math. J. 20 (1970/1971), 213 – 229. · Zbl 0205.10402
[8] J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797 – 872. · Zbl 0153.14503
[9] Линейные и квазилинейные уравнения параболического типа, Издат. ”Наука”, Мосцощ, 1967 (Руссиан). О. А. Ладыžенскаја, В. А. Солонников, анд Н. Н. Урал\(^{\приме}\)цева, Линеар анд чуасилинеар ечуатионс оф параболиц тыпе, Транслатед фром тхе Руссиан бы С. Смитх. Транслатионс оф Матхематицал Монограпхс, Вол. 23, Америцан Матхематицал Социеты, Провиденце, Р.И., 1968 (Руссиан).
[10] O. A. Ladyženskaja and N. N. Ural\(^{\prime}\)ceva, On the Hölder continuity of the solutions and the derivatives of linear and quasi-linear equations of elliptic and parabolic types, Trudy Mat. Inst. Steklov. 73 (1964), 172 – 220 (Russian).
[11] E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali, Rend. Circ. Mat. Palermo 24 (1907), 275-317. · JFM 38.0402.01
[12] Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101 – 134. · Zbl 0149.06902
[13] Olga Oleĭnik, Quasi-linear second-order parabolic equations with many independent variables, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 1, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 332 – 354.
[14] O. A. Oleĭnik and S. N. Kružkov, Quasi-linear parabolic second-order equations with several independent variables, Uspehi Mat. Nauk 16 (1961), no. 5 (101), 115 – 155 (Russian).
[15] Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. · Zbl 0549.35002
[16] Neil S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205 – 226. · Zbl 0159.39303
[17] E. D. Williams, The numerical solution of degenerate parabolic equations, Doctoral Dissertation, Texas Tech University, Lubbock, Tex., 1971.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.