×

zbMATH — the first resource for mathematics

A localization problem in geometry and complexity of discrete programming. (English) Zbl 0248.90044

MSC:
90C25 Convex programming
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Kuhn H., Tucker W. A.: Linear Inequalities and Related Systems. Princeton Univ. Press, Princeton, N. J. 1956. · Zbl 0072.37502
[2] Grünbaum B.: Convex Polytopes. Interscience Publishers, London-New York-Sydney 1967. · Zbl 0163.16603
[3] Berge C.: Théorie des graphes et ses applications. Dunod, Paris 1958. · Zbl 0214.50804
[4] Ore O.: Theory of Graphs. American Mathematical Society, Colloquium Publications 38 (1962). · Zbl 0105.35401
[5] Morávek J.: On the Complexity of Discrete Programming Problems. Aplikace matematiky 14 (1969), 6, 442-474. · Zbl 0196.22804 · eudml:14619
[6] Morávek J.: A Note Upon Minimal Path Problem. Journal of Mathematical Analysis and Appl. 30 (June 1970), 3, 702-717. · Zbl 0175.17703 · doi:10.1016/0022-247X(70)90154-X
[7] Bellman R.: Dynamic Programming Treatment of the Travelling Salesman Problem. J. Assoc. Comput. Mach. 9 (1962), 1, 61-63. · Zbl 0106.14102 · doi:10.1145/321105.321111
[8] Held M., Karp R. M.: A Dynamic Programming Approach to Sequencing Problems. J. Soc. Industr. and Appl. Math. 10 (1962), 1, 196-210. · Zbl 0106.14103 · doi:10.1137/0110015
[9] Edmonds J.: Paths, Trees and Flowers. Canad. J. Math. 17 (1965), 449-467. · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.