×

zbMATH — the first resource for mathematics

The maximal semilattice decomposition of a semigroup, radicals and nilpotency. (English) Zbl 0249.20031

MSC:
20M10 General structure theory for semigroups
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Bosák J.: On radicals of semigroups. Mat. časop. 18 (1968), 204-212. · Zbl 0169.33301
[2] Clifford A. H.: Semigroups without nilpotent ideals. Amer. J. Math. 71 (1949). · Zbl 0045.30101
[3] Clifford A. H., Preston G. B.: The algebraic theory of semigroups, I. Providence 1961. · Zbl 0111.03403
[4] Green J. A.: On the structure of semigroups. Annals of Math. 54 (1951), 163-172. · Zbl 0043.25601
[5] Ляпин Л. С.: Полугруппы. Москва 1960. · Zbl 1004.90500
[6] Luh Jiang: On the concepts of radical of semigroup having kernel. Portug. Math. 19 (1960), 189-198. · Zbl 0095.01405
[7] Petrich M.: The maximal semilattice decomposition of a semigroup. Math. Zeitschr. 85 (1964), 68-82. · Zbl 0124.25801
[8] Шулка П.: О нильпотентных, идеалах и радикалах полугруппы. Mat.-fyz. časop. IS (1963), 209-222. · Zbl 1145.93303
[9] Šulka R.: On the nilpotency in semigroups. Mat. časop. 18 (1968), 148-157. · Zbl 0159.02701
[10] Schwarz Š.: K teorii pologrúp. Sborník prác Prírodovedeckej fakulty Slovenskej univerzity v Bratislavě 6 (1943), 1- 64.
[11] Schwarz Š.: On semigroups having a kernel. Czechslovak Math. J. 1 (1951), 229-263. · Zbl 0048.25302
[12] Tamura T.: The theory of construction of finite semigroups I. Osaka Math. J. 8 (1956), 243-261. · Zbl 0073.01003
[13] Tamura T.: Another proof of a theorem concerning the greatest semilattice-decomposition of a semigroup. Proc. Japan Acad. 40 (1964), 777 - 780. · Zbl 0135.04001
[14] Yamada M.: On the greatest semilattice decomposition of a semigroup. Kódai Math. Sem. Rep. 7 (1955), 59-62. · Zbl 0065.25203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.