×

zbMATH — the first resource for mathematics

Wave propagation aspects of the generalized theory of heat conduction. (English) Zbl 0249.35034

MSC:
35K05 Heat equation
45K05 Integro-partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Morton E. Gurtin andA. C. Pipkin,A General Theory of Heat Conduction with Finite Wave Speeds, Arch. Rat. Mech. Anal.31, 113–126 (1968). · Zbl 0164.12901
[2] Josef Meixner,On the Linear Theory of Heat Conduction, Arch. Rat. Mech. Anal.39, 108–130 (1970). · Zbl 0218.35043
[3] Peter J. Chen,On the Growth and Decay of One-Dimensional Temperature Rate Waves, Arch. Rat. Mech. Anal.35, 1–15 (1969). · Zbl 0186.42702
[4] R. Courant andD. Hilbert,Methods of Mathematical Physics, V. 2. New York: Interscience 1962. · Zbl 0099.29504
[5] V. Volterra,Sulle equazioni integro-differenziali, Rend. Acc. Lincei, series 5,18, 167–174 (1909). · JFM 40.0399.02
[6] M.E. Gurtin andEli Sternberg,On the Linear Theory of Viscoelasticity, Arch. Rat. Mech. Anal.11, 291–356 (1962). · Zbl 0107.41007
[7] O.D. Kellogg,Foundations of Potential Theory, New York: Dover 1953. · Zbl 0053.07301
[8] S. Zaremba,Sopra un teorema d’unicitá relativo alla equazione delle onde sferiche, Atti Accad, Naz. Lincei,24, 904–908 (1915). · JFM 45.0566.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.