zbMATH — the first resource for mathematics

Une formule de Künneth pour les cofaisceaux du type \(({\mathfrak DJN})\). (French) Zbl 0249.46004
46A19 Other “topological” linear spaces (convergence spaces, ranked spaces, spaces with a metric taking values in an ordered structure more general than \(\mathbb{R}\), etc.)
46M05 Tensor products in functional analysis
55N30 Sheaf cohomology in algebraic topology
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
55U25 Homology of a product, Künneth formula
Full Text: DOI EuDML
[1] Köthe, G.: Topologische Vektorräume. Band 1, Berlin-Göttingen-Heidelberg: Springer 1960. · Zbl 0093.11901
[2] Wilde, M. de: Réseaux dans les espaces linéaires à seminormes. Mem. de la Soc. Roy. Sci. Liège,18, (2) 1–123 (1969).
[3] Grothendieck, A.: Espaces vectoriels topologiques. Instituto de Matematica Pura e Aplicada, Universidade de São-Paulo, 1954. · Zbl 0058.33401
[4] Schwartz, L.: Théorie des distributions à valeurs vectorielles. Ann. de l’Inst. Fourier,7, 1–125 (1957). · Zbl 0089.09601
[5] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. of the Amer. Math. Soc.16, (1955).
[6] Bredon, G.: Sheaf theory. New York: Mc. Graw-Hill 1967. · Zbl 0158.20505
[7] Godement, R.: Topologie algèbrique et la théorie des faisceaux. Paris: Hermann 1958. · Zbl 0080.16201
[8] Kaup, L.: Eine Künnethformel für Fréchetgarben. Math. Z.97, 158–168 (1967). · Zbl 0191.53701
[9] Bungart, L.: Holomorphic functions with values in locally convex spaces and applications to integral formulas. Trans. Amer. Math. Soc.111, 317–344 (1964). · Zbl 0142.33902
[10] Wilde, M. de: Opérations ouverts et sous-espaces complémentaires dans un espaces ultrabornologiques. Bull. de la Soc. Roy. Sci. de Liège38, (9–10) 454–458 (1969).
[11] Hörmander, L.: An introduction to complex analysis in several variables. Toronto-New York-London: Van Nostrand Co. 1966. · Zbl 0138.06203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.