×

zbMATH — the first resource for mathematics

Minimal surfaces in 4-dimensional Riemannian manifolds of constant curvature. (English) Zbl 0249.53045

MSC:
53C40 Global submanifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] CHERN, S. S., M. Do CARM, AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields, Springer-Verlag, (1970), 59-75. · Zbl 0216.44001
[2] ITOH, T., Complete surfaces in E4 with constant mean curvature. Kdai Math Sem. Rep. 22 (1970) 150-158. · Zbl 0196.24701 · doi:10.2996/kmj/1138846112
[3] ITOH, T., A note on minimal submanifolds with M-index 2. Kdai Math. Sem Rep. 23 (1971) 204-207. · Zbl 0216.44002 · doi:10.2996/kmj/1138846320
[4] ITOH, T., Minimal surfaces with M-mdex 2, Trindex 2 and 2-index 2. Kda Math. Sem. Rep. 24 (1972) 1-16. · Zbl 0237.53043 · doi:10.2996/kmj/1138846469
[5] LITTLE, J. A., On singularities of submanifolds of higher dimensional Euclidea spaces. Annli Math., (1969), 261-336. · Zbl 0187.18903 · doi:10.1007/BF02411172
[6] OTSUKI, T., On minimal submanifolds with M-mdex 2. J. Differential Geometry, 6 (1971), 193-211 · Zbl 0228.53036
[7] OTSUKI, T., Minimal submanifolds with M-index 2 in Riemannian Manifolds o constant curvature. Thoku Math. J. 23 (1971), 371-402. · Zbl 0224.53029 · doi:10.2748/tmj/1178242589
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.