×

zbMATH — the first resource for mathematics

Boundary approach filters for analytic functions. (English) Zbl 0251.30034

MSC:
30D40 Cluster sets, prime ends, boundary behavior
30D55 \(H^p\)-classes (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. BRELOT and J.L. DOOB, Limites angulaires et limites fines, Ann. Inst. Fourier, 13 (1963), 395-415. · Zbl 0132.33902
[2] J.L. DOOB, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. · Zbl 0097.34004
[3] Kenneth HOFFMAN, Banach spaces of analytic functions, Prentice Hall 1962. · Zbl 0117.34001
[4] Kenneth HOFFMAN, Bounded analytic functions and Gleason parts, Ann. Math. 86 (1967), 74-111. · Zbl 0192.48302
[5] L. LUMER-NAÏM, Sur le rôle de la frontière de R.S. martin dans la théorie du potentiel, Ann. Inst. Fourier 7 (1957), 183-281. · Zbl 0086.30603
[6] Gabriel MOKODOBZKI, Ultrafiltres rapides sur N. construction d’une densité relative de deux potentiels comparables, Séminaire Théorie Potentiel Brelot-Choquet-Deny 1967/1968 Exp. 12. · Zbl 0177.37701
[7] M. ROSENFELD and MAX L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc. (2) 2 (1970), 209-215. · Zbl 0193.10301
[8] M. TSUJI, Potential theory in modern function theory, Tokyo 1959. · Zbl 0087.28401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.