Nielson, Gregory M. Bivariate spline functions and the approximation of linear functionals. (English) Zbl 0251.41004 Numer. Math. 21, 138-160 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 Documents MSC: 41A15 Spline approximation 41A50 Best approximation, Chebyshev systems 41A45 Approximation by arbitrary linear expressions PDFBibTeX XMLCite \textit{G. M. Nielson}, Numer. Math. 21, 138--160 (1973; Zbl 0251.41004) Full Text: DOI EuDML References: [1] Ahlberg, J. H., Nilson, E. N.: The approximation of linear functionals. SIAM J. Numer. Anal.3, 173-182 (1966) · Zbl 0147.05102 · doi:10.1137/0703013 [2] Ahlberg, J. H., Nilson, E. N., Walsh, J. L.: The theory of splines and their applications. New York: Academic Press 1967 · Zbl 0158.15901 [3] Davis, P. J.: Interpolation and approximation. New York: Blaisdell 1963 · Zbl 0111.06003 [4] Boor, C. de: Bicubic spline interpolation. J. Math. and Phys.41, 212-218 (1962) · Zbl 0108.27103 [5] Boor, C. de, Lynch, R. E.: On splines and their minimum properties. J. Math. Mech.15, 953-969 (1966) · Zbl 0185.20501 [6] Golomb, M., Weinberger, H. F.: Optimal approximation and error bounds. In: On numerical approximation. R. E. Langer (Ed.), p. 117-190. Madison, Wisc.: University of Wisconsin Press 1959 · Zbl 0092.05802 [7] Mansfield, L. E.: On the optimal approximation of linear functionals in spaces of bivariate functions. SIAM J. Numer. Anal.8, 115-126 (1971) · Zbl 0219.65024 · doi:10.1137/0708015 [8] Mansfield, L. E.: Optimal approximations and error bounds in spaces of bivariate functions. J. Approx. Theory5, 77-96 (1972) · Zbl 0247.41012 · doi:10.1016/0021-9045(72)90031-7 [9] Ritter, D.: Two dimensional spline functions and best approximation of linear functionals. J. Approx. Theory3, 352-368 (1970) · Zbl 0203.37001 · doi:10.1016/0021-9045(70)90040-7 [10] Sard, A.: Linear approximation. Math. Surveys No.9, American Mathematical Society, Providence, Rhode Island (1963) · Zbl 0115.05403 [11] Schoenberg, I. J.: Spline interpolation and best quadrature formulae. Bull. Amer. Math. Soc.70, 143-148 (1964) · Zbl 0136.36202 · doi:10.1090/S0002-9904-1964-11054-5 [12] Schoenberg, I. J.: On Monosplines of least deviation and best quadrature formulae I. SIAM J. Numer. Anal.2, 144-170 (1965), Ibid.3, 321-328 (1966) · Zbl 0136.36203 [13] Schoenberg, I. J.: On the Ahlberg-Nilson extension of spline interpolation: theg-spline and their optimal properties. J. of Math. Anal. and Appl.21, 207-231 (1968) · Zbl 0159.08401 · doi:10.1016/0022-247X(68)90252-7 [14] Secrest, D.: Best approximate integration formulas and best error bounds. Math. comp.19, 79-83 (1965) · Zbl 0134.13606 [15] Secrest, D.: Numerical integration of arbitrarily spaced data and estimation of errors. SIAM J. Numer. Anal.2, 52-58 (1965) · Zbl 0135.38601 [16] Secrest, D.: Error bounds for interpolation and differentiation by the use of spline functions. SIAM J. Numer. Anal.2, 440-447 (1965) · Zbl 0143.38804 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.