×

A simple example of a universal Schwartz space. (English) Zbl 0251.46005


MSC:

46A03 General theory of locally convex spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] John B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc. 126 (1967), 474 – 486. · Zbl 0166.10901
[2] Joseph Diestel, Sidney A. Morris, and Stephen A. Saxon, Varieties of locally convex topological vector spaces, Bull. Amer. Math. Soc. 77 (1971), 799 – 803. · Zbl 0219.46002
[3] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[4] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \?_{\?}-spaces and their applications, Studia Math. 29 (1968), 275 – 326. · Zbl 0183.40501
[5] J. Lindenstrauss and H. P. Rosenthal, The \cal\?_{\?} spaces, Israel J. Math. 7 (1969), 325 – 349. · Zbl 0205.12602
[6] Dan Randtke, Characterization of precompact maps, Schwartz spaces and nuclear spaces, Trans. Amer. Math. Soc. 165 (1972), 87 – 101. · Zbl 0209.14405
[7] Daniel J. Randtke, A structure theorem for Schwartz spaces, Math. Ann. 201 (1973), 171 – 176. · Zbl 0234.46002
[8] T. Terzioğlu, On Schwartz spaces, Math. Ann. 182 (1969), 236 – 242. · Zbl 0179.45501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.