zbMATH — the first resource for mathematics

Some intrinsic characterizations of minimal surfaces. (English) Zbl 0251.53003

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
49Q05 Minimal surfaces and optimization
Full Text: DOI
[1] W. Blaschke, Einführung in die Differentialgeometrie, Springer, Berlin, 1950. · Zbl 0041.28804
[2] E. Calabi, Isometric imbedding of complex manifolds,Ann. of Math.,58 (1953), 1–23. · Zbl 0051.13103 · doi:10.2307/1969817
[3] –, Quelques applications de l’analyse complexe aux surfaces d’aire minima, Topics in complex manifolds, Univ. of Montreal Press, Montreal, 1967, 58–81.
[4] S. S. Chern and R. Osserman, Complete minimal surfaces in Euclideann-space,J. d’Analyse Math.,19 (1967), 15–34. · Zbl 0172.22802 · doi:10.1007/BF02788707
[5] H. B. Lawson, Jr.,Minimal varieties in constant curvature manifolds, Ph.D. Thesis, Stanford University, 1968.
[6] M. Pinl, Über einen Satz von G. Ricci-Curbastro und die Gaussche Krummung der Minimalflächen,Arch. Math.,4 (1953), 369–373. · Zbl 0053.29402 · doi:10.1007/BF01899252
[7] –, Über einen Satz von G. Ricci-Curbastro und die Gaussche Krummung der Minimalflächen, II,Arch. Math.,15 (1964), 232–240. · Zbl 0121.16402 · doi:10.1007/BF01589191
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.