zbMATH — the first resource for mathematics

The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process. (English) Zbl 0251.60033

60G15 Gaussian processes
60G17 Sample path properties
46E20 Hilbert spaces of continuous, differentiable or analytic functions
Full Text: DOI
[1] Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337-404 (1950). · Zbl 0037.20701
[2] Eaves, D.M.: Sample functions of Gaussian random fields are either continuous or very irregular. Ann. Math. Statist. 38, 1579-1582 (1967). · Zbl 0189.17701
[3] Garcia, A.M., Posner, E.C., Rodemich, R.R.: Some properties of the measures on function spaces induced by Gaussian processes. J. Math. Anal. Appl. 21, 150-161 (1968). · Zbl 0155.23801
[4] Kallianpur, G.: Zero-one laws for Gaussian processes. Trans. Amer. Math. Soc. 149, 199-211 (1970). · Zbl 0234.60032
[5] MacDuffee, C.C.: The Theory of Matrices. New York: Chelsea 1946. · Zbl 0007.19507
[6] Nisio, M.: On the continuity of stationary Gaussian processes. Nagoya Math. J. 34, 89-104 (1969). · Zbl 0174.49301
[7] Parzen, E.: Statistical Inference on Time Series by Hilbert Space Methods, I. Dept. of Statist., Stanford Univ., Technical Report No. 23, January 2, 1959.
[8] Parzen, E.: Probability density functionals and reproducing kernel Hilbert spaces. Time Series Analysis. 155-169 M. Rosenblatt, Ed. New York: Wiley 1963. · Zbl 0168.18101
[9] Parzen, E.: Time Series Analysis Papers. San Francisco: Holden-Day 1967. · Zbl 0171.39602
[10] Preston, C.: Continuity properties of some Gaussian processes. Ann. Math. Statist. 43, 285-292 (1972). · Zbl 0268.60044
[11] Prohorov, Yu.V.: Convergence of random processes and limit theorems in probability theory. Theor. Probab. Appl. 1, 157-214 (1956).
[12] Schatten, R.: A Theory of Cross Spaces. Ann. Math. Studies 26, 1-153 (1950). · Zbl 0041.43502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.