Minimization of norms and logarithmic norms by diagonal similarities. (English) Zbl 0251.65034


65F35 Numerical computation of matrix norms, conditioning, scaling
Full Text: DOI


[1] Bauer, F., J. Stoer, andC. Witzgall: Absolute and Monotonic Norms. Num. Math.3, 257–264 (1961). · Zbl 0111.01602 · doi:10.1007/BF01386026
[2] Dahlquist, G.: Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations. Trans. Royal Institute of Technology, Nr. 130, Stockholm 70, Sweden. · Zbl 0085.33401
[3] Eberlein, P.: On Measures of Non-Normality for Matrices. Am. Math. Monthly72, 995–996 (1965). · Zbl 0142.00301 · doi:10.2307/2313341
[4] Henrici, P.: Bounds for Iterates, Inverses, Spectral Variation and Fields of Values of Nonnormal Matrices. Num. Math.4, 24–40 (1962). · Zbl 0102.01502 · doi:10.1007/BF01386294
[5] Householder, A.: The Theory of Matrices in Numerical Analysis. Blaisdell Publ. Co. 1964. · Zbl 0161.12101
[6] Osborne, E.: On Preconditioning of Matrices. J. ACM7, 338–345 (1960). · Zbl 0106.31604 · doi:10.1145/321043.321048
[7] Parlett, B., andC. Reinsch: Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors. Num. Math.13, 293–304 (1969). · Zbl 0184.37703 · doi:10.1007/BF02165404
[8] Ström, T.: On the Use of Majorants for Strict Error Estimation of Numerical Solutions to Ordinary Differential Equations. Techn. Rept. NA 70.10, Dept. of Comp. Science, Royal Institute of Technology, Stockholm 70, Sweden.
[9] Ström, T.: On Logarithmic Norms. Techn. Rept. NA 69.06. Dept. of Comp. Science, Royal Institute of Technology, Stockholm 70, Sweden. · Zbl 0321.15012
[10] Varga, M.: Matrix Iterative Analysis. Prentice Hall. 1962. · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.