×

zbMATH — the first resource for mathematics

Maximum principle and uniform convergence for the finite element method. (English) Zbl 0251.65069

MSC:
65N06 Finite difference methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bramble, J.H; Hubbard, B.E; Thomée, V, Convergence estimates for essentially positive type discrete problems, Math. comp., 23, 695-710, (1969) · Zbl 0217.21902
[2] Ciarlet, P.G, Discrete maximum principle for finite-difference operators, Aequationes math., 4, 338-352, (1970) · Zbl 0198.14601
[3] Aronszajn, N; Smith, K.T, Characterisation of positive reproducing kernels. application to Green’s functions, Amer. J. math., 79, 611-622, (1957) · Zbl 0079.13603
[4] Ciarlet, P.G, Discrete variational Green ’s function. I, Aequationes math., 4, 74-82, (1970) · Zbl 0194.12703
[5] Stampacchia, G, Le problème de Dirichlet pour LES équations elliptiques du second ordre à coefficients discontinus, Ann. inst. Fourier (Grenoble), 15, 189-258, (1965) · Zbl 0151.15401
[6] Lebaud, G, Sur l’approximation de l’équation \(Au = −∑\^{}\{n\}i=1 Di (¦Diu¦\^{}\{p−2\} Diu) = T\). rendi conti mat., 2, 443-471, (1969)
[7] Lebaud, G; Raviart, P.-A, Sur l’approximation du problème de Dirichlet pour LES opérateurs elliptiques d’ordre 2, Rendiconti mat., 2, 507-562, (1969) · Zbl 0236.35005
[8] Nitsche, J, Lineare spline-funktionen und die methoden von Ritz für elliptische randwertprobleme, Arch. rational mech. anal., 36, 348-355, (1970) · Zbl 0192.44503
[9] Nec̆as, J, LES méthodes directes en théorie des équations elliptiques, (1967), Masson Paris · Zbl 1225.35003
[10] Ciarlet, P.G; Raviart, P.-A, General Lagrange and Hermite interpolation in R^n with applications to finite element methods, Arch. rational mech. anal., 46, 177-199, (1972) · Zbl 0243.41004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.