×

zbMATH — the first resource for mathematics

One dimensional perturbations of restricted shifts. (English) Zbl 0252.47010

MSC:
47A55 Perturbation theory of linear operators
30D55 \(H^p\)-classes (MSC2000)
47B20 Subnormal operators, hyponormal operators, etc.
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. R. Ahern and D. N. Clark, Radial limits and invariant subspaces,Amer. J. Math.,92 (1970), 332–342. · Zbl 0197.39202
[2] P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces,Acta Math.,124 (1970), 191–204. · Zbl 0193.10201
[3] P. Colwell, On the boundary behavior of Blaschke products in the unit disk,Proc. Amer. Math. Soc.,17 (1966), 582–587. · Zbl 0146.10002
[4] R. G. Douglas, Structure theory for operators,I, J. Reine Angew. Math.,252 (1968), 189–193.
[5] O. Frostman, Sur Les produits de Blaschke,Kungl. Fysiogr. Sällsk. Lund Förh.,12 (1942), 169–182.
[6] H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964. · Zbl 0119.11303
[7] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. · Zbl 0148.12601
[8] T. L. Kriete, III, Complete non-selfadjointness of almost selfadjoint operators, to appear.
[9] M. Lee and D. Sarason, The spectra of some Toeplitz operators,J. Math. Anal. Appl.,33 (1971), 529–543. · Zbl 0206.13702
[10] C. R. Putnam, Commutation properties of Hilbert space operators, Springer Verlag, New York, 1967. · Zbl 0149.35104
[11] F. Riesz and B. Sz. Nagy, Functional analysis, Frederick Ungar, New York, 1955. · Zbl 0070.10902
[12] D. Sarason, A remark on the Volterra operator,J. Math. Anal. Appl.,12 (1965), 244–246. · Zbl 0138.38801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.