Carrell, James B.; Lieberman, David I. Holomorphic vector fields and Kaehler manifolds. (English) Zbl 0253.32017 Invent. Math. 21, 303-309 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 32 Documents MSC: 32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Carrell, J. B., Howard, A., Kosniowski, C.: Holomorphic vector fields on complex surfaces. To appear in Math. Ann. · Zbl 0242.14008 [2] Deligne, P.: Théoréme de Lefschetz et critères de degénérescence de suites spectrales. Inst. Hautes Sci. Publ. Math. No.35 (1968) · Zbl 0159.22501 [3] Grothendieck, A.: Éléments de géométrie algebrique. Inst. Hautes Sci. Publ. Math.11 (1961). MR 20# 1210 [4] Howard, A.: Holomorphic vector fields on algebraic manifolds. To appear in Amer. J. of Math.94 (1972),1282-1290. · Zbl 0258.32014 · doi:10.2307/2373575 [5] Kobayashi, S.: Transformation groups in differential geometry. New York: Springer 1972 · Zbl 0246.53031 [6] Kosniowski, C.: Applications of the Holomorphic Lefschetz Formula, Bull. London Math. Soc.2, 43-48 (1970) · Zbl 0193.23903 · doi:10.1112/blms/2.1.43 [7] Lichnerowicz, A.: Variétés Kähleriennes et premiere classe de Chern, Journal of Diff. Geom.1, 195-224 (1967). MR 37 # 2150 · Zbl 0167.20004 [8] Wright, E.: Ph. D. thesis, University of Notre Dame This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.