×

zbMATH — the first resource for mathematics

Harmonic analysis on hyperboloids. (English) Zbl 0253.43013

MSC:
43A85 Harmonic analysis on homogeneous spaces
22E43 Structure and representation of the Lorentz group
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gelfand, I.M; Graev, M.I; Vilenkin, N.Ja, ()
[2] Helgason, S, Lie groups and symmetric spaces, () · Zbl 0177.50601
[3] Molčanov, V.F, Harmonic analysis on a hyperboloid of one sheet, Soviet math. dokl., 7, 1553-1556, (1966) · Zbl 0176.44303
[4] Molčanov, V.F, Analogue of the Plancherel formula for hyperboloids, Soviet math. dokl., 9, 1382-1385, (1968) · Zbl 0176.44304
[5] Riesz, M, L’intégral de Riemann-Liouville et le problème de Cauchy, Acta math., 8, 1-223, (1949) · Zbl 0033.27601
[6] Shintani, T, On the decomposition of regular representation of the Lorentz group on a hyperboloid of one sheet, (), 1-5 · Zbl 0184.17403
[7] Strichartz, R, The stationary observer problem for □u = mu and related equations, J. differential equations, 9, 205-223, (1971) · Zbl 0216.12803
[8] Takahashi, R, Sur LES représentations unitaires des groupes de Lorentz généralisés, Bull. soc. math. France, 91, 289-433, (1963) · Zbl 0196.15501
[9] Vilenkin, N.Ja, Special functions and the theory of group representations, Amer. math. soc. transl., 22, (1968)
[10] Limic, N; Niederle, J; Raczka, R, Discrete degenerate representations of noncompact rotation groups, J. math. phys., 7, 1861-1876, (1966) · Zbl 0163.22802
[11] Limic, N; Niederle, J; Raczka, R, Continuous degenerate representations of noncompact rotation groups, J. math. phys., 7, 2026-2035, (1966) · Zbl 0158.45805
[12] Limic, N; Niederle, J; Raczka, R, Eigenfunction expansions associated with the second-order invariant operator on hyperboloids and cones, J. math. phys., 8, 1079-1093, (1967) · Zbl 0173.30102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.