×

zbMATH — the first resource for mathematics

Completeness in arithmetical algebras. (English) Zbl 0254.08010

MSC:
08Axx Algebraic structures
08B99 Varieties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. L. Foster,Generalized ’Boolean’ theory of universal algebras II, Math. Z.59 (1953), 191–199. · Zbl 0051.26202 · doi:10.1007/BF01180250
[2] A. L. Foster,Automorphisms and functional completeness in universal algebras, Math. Ann.180 (1969), 138–169. · Zbl 0165.32901 · doi:10.1007/BF01350744
[3] A. L. Foster,Congruence relations and functional completeness in universal algebras; structure theory for hemi-primals I, Math. Z.113 (1970), 293–308. · Zbl 0184.03503 · doi:10.1007/BF01110329
[4] A. L. Foster and A. F. Pixley,Semi-categorical algebras I, Math. Z.83 (1964), 147–169. · Zbl 0117.26001 · doi:10.1007/BF01111252
[5] A. L. Foster and A. F. Pixley,Total algebras and weak independence I, Math. Z.123 (1971), 93–104. · Zbl 0217.02901 · doi:10.1007/BF01110109
[6] J. Froemke,Conservative algebras (preprint). · Zbl 0239.08009
[7] L. Fuchs,Über die Ideale arithmetischer Ringe Commentarii Math. Helvet.23 (1949), 334–341. · Zbl 0040.30103 · doi:10.1007/BF02565607
[8] G. Grätzer,On Boolean functions (Notes on lattice theory II), Revue de Math. Pure et Appliqueés,7 (1962), 693–697. · Zbl 0134.25801
[9] G. Grätzer,Universal algebra (Princeton N. J., Van Nostrand, 1968).
[10] Tah-Kai Hu,Characterization of algebraic functions in equational classes generated by independent primal algebras (preprint). · Zbl 0242.08004
[11] A. A. Iskander,Algebraic functions on p-rings, Colloquium Math. (to appear). · Zbl 0212.04001
[12] B. Jónsson,Algebras whose congruence lattices are distributive, Math. Scand.21 (1967), 110–121. · Zbl 0167.28401
[13] G. Michler, and R. Wille,Die primitiven Klassen arithmetischer Ringe, Math. Z.113 (1970), 369–372. · Zbl 0207.04703 · doi:10.1007/BF01110505
[14] A. F. Pixley,Functionally complete algebras generating permutable and distributive classes, Math. Z.114 (1970), 361–372. · Zbl 0187.28701 · doi:10.1007/BF01110387
[15] A. F. Pixley,The ternary discriminator function in universal algebra, Math. Ann.191 (1971), 167–180. · Zbl 0208.02702 · doi:10.1007/BF01578706
[16] A. F. Pixley,A note on hemi-primal algebras, Math. Z.124 (1972), 213–214. · Zbl 0221.08009 · doi:10.1007/BF01110800
[17] A. F. Pixley,Local weak independence and primal algebra theory, Bollettino della Unione Matematica Italiana (to appear). · Zbl 0249.08007
[18] R. Quackenbush,Demi-semi-primal algebras and Malcey conditions, Math. Z.122 (1971), 166–176. · Zbl 0214.03102 · doi:10.1007/BF01110090
[19] F. M. Sioson,Contributions to the theory of primal and functionally complete algebras (Ph. D. dissertation Univ. of Calif., Berkeley, 1960).
[20] H. Werner,Produkte von Kongruenzklassengeometrien universeller Algebren, Math. Z.121 (1971), 111–140. · Zbl 0203.22902 · doi:10.1007/BF01113481
[21] H. Werner,Eine Characterisierung funktional vollständiger Algebren, Arch. der Math.21 (1970), 381–385. · Zbl 0211.32003 · doi:10.1007/BF01220934
[22] O. Zariski and P. Samuel,Commutative algebra vol. I (Princeton, N.J., Van Nostrand Co., 1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.