×

zbMATH — the first resource for mathematics

Complements à l’article: ”Groupes reductifs”. (French) Zbl 0254.14018

MSC:
14L99 Algebraic groups
20G25 Linear algebraic groups over local fields and their integers
22E99 Lie groups
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Borel,Linear Algebraic Groups, notes by H. Bass, New York, Benjamin, 1969. · Zbl 0206.49801
[2] ——, andT. A. Springer, Rationality properties of linear algebraic groups, II,Tôhoku Math. Jour.,20 (1968), 443–497. · Zbl 0211.53302 · doi:10.2748/tmj/1178243073
[3] —— etJ. Tits, Groupes réductifs,Publ. Math. I.H.E.S.,27 (1965), 55–151.
[4] N. Bourbaki,Groupes et algèbres de Lie, chap. IV, V, VI,Act. Sci. Ind., 1337, Paris, Hermann, 1968.
[5] C. Chevalley,Séminaire sur la classification des groupes de Lie algébriques, 2 vol., notes polycopiées, Inst. H. Poincaré, Paris, 1958.
[6] M. Demazure etP. Gabriel,Groupes algébriques, t. I, Paris, Masson, 1970. · Zbl 0203.23401
[7] V. P. Platonov, The problem of strong approximation and the conjecture of Kneser-Tits on algebraic groups,Isvestia Ak. Nauk. USSR,33 (1969), 1211–1219.
[8] C. Riehm, The congruence subgroup problem over local fields,Amer. Jour. Math.,92 (1970), 771–778. · Zbl 0199.34702 · doi:10.2307/2373373
[9] R. Steinberg,Lectures on Chevalley groups, notes by J. Faulkner and R. Wilson, Yale University, 1967. · Zbl 0164.34302
[10] J. Tits, Formes quadratiques, groupes orthogonaux et algèbres de Clifford,Inventiones Math.,5 (1968), 19–41. · Zbl 0155.05202 · doi:10.1007/BF01404536
[11] ——, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque,J. Reine Angew. Math.,247 (1971), 196–220. · Zbl 0227.20015 · doi:10.1515/crll.1971.247.196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.