×

zbMATH — the first resource for mathematics

On a theorem of Gersgorin. (English) Zbl 0254.15012

MSC:
15A42 Inequalities involving eigenvalues and eigenvectors
28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] David, M.: Approximate eigenvalues of infinite matrices. Anale le stiintifice ale universitatii Al. I. Cuza din Iasi14, 369-382 (1968).
[2] Ger?gorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR7, 749-754 (1931).
[3] Halmos, P. R.: Measure theory. D. Van Nostrand. 1950. · Zbl 0040.16802
[4] Hanani, H., E. Netanyahu, andM. Reichaw: Eigenvalues of infinite matrices. Colloq. Math.19, 89-101 (1968). · Zbl 0155.06401
[5] Householder, A. S.: The theory of matrices in numerical analysis. Blaisdell. 1964. · Zbl 0161.12101
[6] Lewinger, B. W., andR. S. Varga: Minimal Gerschgorin Sets II. Pacific J. Math.17, 199-210 (1966). · Zbl 0168.03001
[7] Marcus, M., andH. Minc: Introduction to linear algebra. Macmillan. 1965. · Zbl 0142.26801
[8] Schneider, H.: Regions of exclusion for the latent roots of a matrix. Proc. Amer. Math. Soc.5, 320-332 (1954). · Zbl 0055.01201
[9] Taussky, O.: A recurring theorem on determinants. American Math. Monthly56, 672-676 (1949). · Zbl 0036.01301
[10] Taussky, O.: Bibliography on bounds for characteristic roots of finite matrices. National Bureau of Standards Report, September 1951. · Zbl 0045.29903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.