zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the generalized Lienard equation with negative damping. (English) Zbl 0254.34038

MSC:
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
WorldCat.org
Full Text: DOI
References:
[1] Banfi, C.: Su un sistema generalizzato di Liénard. Ist. lombardo accad. Sci. lett. Rend. MR 25#3228 95, 485-491 (1961) · Zbl 0108.09102
[2] Barbălat, I.: Systèmes d’équations différentielles d’oscillations non linéaires. Rev. roumaine math. Pures appl. 4, 267-270 (1959)
[3] I. Barbălat, Systèmes d’équations différentielles de type Liénard, Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech.1965, 206--218.
[4] E. A. Barbasin and B. A. Tabueva, Pendulum oscillations with dry friction, Izv. Vysš. Učebn. Zaved. Matematika1959, 48--57. [MR 25#265].
[5] E. A. Barbašin and É. V. Vdovina, Uniqueness conditions for limit cycles, Izv. Vysš. Učebn. Zaved. Matematika1960, 43--47. [MR 24#A3334].
[6] Bibilov, Ju.N.: On the convergence of solutions of the cartwright-Littlewood equation. Dokl. akad. Nauk SSSR 178, 763-776 (1968)
[7] Brown, T. A.: A uniqueness condition for nontrivial periodic solutions to the Liénard equation. J. math. Anal. appl. 8, 387-391 (1964) · Zbl 0128.08901
[8] Burton, T. A.: On the equation x” + $f(x)$ h (x’) x’ + $g(x) = e(t)$. Ann. mat. Pura appl. 85, 277-286 (1970) · Zbl 0194.40203
[9] Burton, T. A.: The generalized Liénard equation. SIAM J. Control ser. A 3, 223-230 (1965) · Zbl 0135.30201
[10] Burton, T. A.; Townsend, C. G.: On the generalized Liénard equation with forcing term. J. differential equations 4, 620-633 (1968) · Zbl 0174.13602
[11] T. A. Burton and C. G. Townsend, Stability regions of the forced Liénard equation, Proc. London Math. Soc., to appear. · Zbl 0238.34068
[12] Bushaw, D. W.: The differential equation x \ddot{} + $g(x, x) + h(x) = e(t)$. Terminal report on contract AF $29(600)-1003$ (1958)
[13] Caughey, T. K.; Malhotra, R. K.: A generalization of the van der Pol and Rayleigh equations. Nonlinear vibration problems MR 36#1745 6, 9-20 (1966) · Zbl 0145.21002
[14] Cesari, Lamberto: Asymptotic behavior and stability problems in ordinary differential equations. (1963) · Zbl 0082.07602
[15] Coppel, W. A.: Limit cycles and rotated vector fields. MRC technical summary report #583 (1965) · Zbl 0154.09301
[16] Coppel, W. A.: On the uniqueness of limit cycles. Boll. un. Mat. ital. MR 31#1428 19, 441-445 (1964) · Zbl 0128.31402
[17] Datko, R.: The asymptotic stability of a class of second order differential equations. J. inst. Math. appl. MR 39#562 4, 276-281 (1968) · Zbl 0182.12101
[18] Ezeilo, J. O. C.: A note on convergence of solutions of certain second order differential equations. Portugal math. MR 34#4597 24, 49-58 (1965) · Zbl 0144.10505
[19] De Figueiredo, R. J. P.: Contribution to the theory of certain non-linear differential equations. Estudos, ensaios e documentos, no. 73 (1960)
[20] De Figueiredo, R. J. P.: Existence and uniqueness results for Liénard’s equation. IEEE trans. Circuit theory 17, 313-321 (1970)
[21] De Figueiredo, R. J. P.; Chang, Chieng-Yi: On the boundedness of solutions of classes of multidimensional nonlinear autonomous systems. SIAM J. Appl. math. 17, 672-680 (1969) · Zbl 0212.43302
[22] Filippov, A. F.: Dissipativity and periodic solutions of second order nonsymmetric systems. Differencial’nye uravnenija MR 37#5476 3, 1634-1642 (1967)
[23] Fink, A. M.: Uniqueness theorems and almost periodic solutions to second order differential equations. J. differential equations 4, 543-548 (1968) · Zbl 0167.38303
[24] Frederickson, P. O.; Lazer, A. C.: Necessary and sufficient damping in a second order oscillator. J. differential equations 5, 262-270 (1969) · Zbl 0167.07902
[25] Furuya, S.: A nonlinear differential equation. Proceedings of the U.S.-Japan seminar on differential and functional equations, 89-97 (1967) · Zbl 0183.09603
[26] Furuya, S.: On a nonlinear differential equation. Comment. math. Univ. st. Paul. MR 31#436 9, 97-113 (1961) · Zbl 0109.31601
[27] Heidel, J. W.: Global asymptotic stability of a generalized Liénard equation. SIAM J. Appl. math. 19, 629-636 (1970) · Zbl 0186.41701
[28] Hohlova, L. V.: On curves defined by Liénard differential equations. Mat. sb. (N. S.) MR 33#2893 70, No. 112, 231-240 (1966)
[29] Huaux, A.: Sur la stabilité des solutions constantes de l’équation autonome de Liénard x\ddot{} + $a(x)$ x\dot{} + ${\phi}(x) = 0$. C. R. Acad. sci. Paris MR 28#4200 258, 2003-2006 (1964) · Zbl 0139.04101
[30] Huaux, A.: Sur la stabilité des solutions constantes de l’équation differentielle non-linéaire du deuxième ordre. Bull. acad. Polon., sci., sér. Sci. techn. 14, 187-191 (1966)
[31] Kevanisvili, G.: On the existence of a limiting cycle in some self-vibrating systems. Tbiliss. GoS univ. Trudy ser. Fiz. nauk 86, 133-141 (1960)
[32] Kirsten, P.; Müller, W.: Überlegungen zum existenzbeweis für periodische bewegungen einfacher nichtlinearer Schwinger mit geschwindigkeitssprüngen. Z. angew. Math. mech. 49, 369-372 (1969) · Zbl 0187.21902
[33] Klokov, Ju.L.: A method for the solution of a limit boundary problem for an ordinary second-order differential equation. Mat. sb. (N. S.) MR 25#260 53, No. 95, 219-232 (1961) · Zbl 0131.31603
[34] N. N. Kuškov, A theorem on periodic solutions of a certain system of two differential equations, Vesci Akad. Navuk BSSR. Ser. Fiz.-Tèhn. Navuk1961, 21--24. [MR 25#277].
[35] La Salle, J.; Lefschetz, S.: Stability by Liapunov’s direct method with applications. (1961) · Zbl 0098.06102
[36] Lazer, A. C.: On Schauder’s fixed point theorem and forced second-order non-linear oscillations. J. math. Anal. appl. 21, 421-425 (1968) · Zbl 0155.14001
[37] Lefschetz, Solomon: Differential equations: geometric theory. (1957) · Zbl 0080.06401
[38] Legatos, G. G.; Kartsatos, A. G.: Correction. Bull. soc. Math. grèce (N. S.) 61, 126 (1965)
[39] Levinson, N.: On the existence of periodic solutions for second order differential equations with a forcing term. J. math. Phys. 22, 41-48 (1943) · Zbl 0061.18909
[40] Levinson, N.; Smith, O. K.: A general equation for relaxation oscillations. Duke math. J. 9, 382-403 (1942) · Zbl 0061.18908
[41] Manfredi, B.: Esistenza e non esistenza di soluzioni periodiche in un problema di meccanica non lineare. Riv. mat. Univ. parma 8, 309-316 (1967) · Zbl 0204.10204
[42] Manfredi, B.: Esistenza e unicità Della soluzione di un problema di meccanica non lineare. Riv. mat. Univ. parma 8, 13-40 (1964) · Zbl 0145.10402
[43] Manfredi, B.: Studio dell’andamento Della soluzione di un problema di meccanica non lineare. Riv. mat. Univ. parma 7, 315-323 (1966) · Zbl 0173.34501
[44] Minorsky, Nicholas: Nonlinear oscillations. (1962) · Zbl 0102.30402
[45] Müller, W.: Eine bemerkung zu einem resultat von Z. Opial. Monatsb. deutsch. Akad. wiss. Berlin MR 34#7900 8, 90-92 (1966) · Zbl 0145.33301
[46] Müller, W.: Über die beschränktheit der lösungen der cartwright-Littlewood-schen gleichung. Math. nachr. 29, 25-40 (1965) · Zbl 0128.31901
[47] Müller, W.: Über die beschränktheit der lösungen einer nichtlinearen differentialgleichung zweiter ordnung. Math. nachr. 36, 215-229 (1968) · Zbl 0155.13402
[48] Müller, W.: Über die beschränktheit der lösungen eines system von differentialgleichungen zweiter ordnung. Math. nachr. 32, 41-47 (1966) · Zbl 0148.06602
[49] Müller, W.: Ein beschränktheitssatz für die lösungen eines nichtlinearen differentialgleichungssystems. Monatsb. deutsch. Akad. wiss. Berlin 7, 754-758 (1965) · Zbl 0171.05202
[50] Müller, W.: Beschränktheitssätze für die lösunges eines systems von zwei differentialgleichungen. Wiss. Z. Fr.-schiller--univ. Jena 14, 427-430 (1965) · Zbl 0151.11601
[51] W. Müller, Qualitative Untersuchung der Lösungen nichtlinearer Differentialgleichungen zweiter Ordnung nach der direkten Methode von Ljapunov, Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech.1965, No. 4, 5--71. · Zbl 0149.29704
[52] Munkres, James R.: Elementary differential topology. (1966) · Zbl 0161.20201
[53] Muntean, I.: Contributions à l’étude qualitative des oscillations non linéaires: oscillations harmoniques. C. R. Acad. sci., Paris ser. A 264, 437-439 (1967) · Zbl 0148.07301
[54] Muntean, I.: Errata. C. R. Acad. sci., Paris ser. A 266, A107 (1968)
[55] Muntean, I.: Harmonic oscillations for some systems of two differential equations. J. math. Anal. appl. 24, 474-485 (1968) · Zbl 0209.39404
[56] Munteanu, I.: Sur un cycle limite. Mathematica (Cluj) MR 29#6106 4, No. 27, 293-307 (1962) · Zbl 0127.04403
[57] Munteanu, I.: On a limit cycle. Acad. R. P. romîne fil. Iasi stud. Cerc. sti. Mat. MR 30#4026 14, 243-254 (1963) · Zbl 0142.35502
[58] Munteanu, I.: Solutions bornées et solutions périodiques pour certains systèmes d’équations différentielles. Acad. R. P. romaine fil. Cluj. stud. Cerc. mat. 8, 125-131 (1957)
[59] Munteanu, I.: A theorem on existence of periodic solutions. Mathematica (Cluj) MR 25#4188 1, No. 24, 287-296 (1959)
[60] Onuchic, N.: Stability properties of a second order differential equation. Acta mexicana ci. Tecn. 3, 6-11 (1969) · Zbl 0234.34063
[61] Ponzo, P. J.: Forced oscillations of the generalized Liénard equation. SIAM J. Appl. math. 15, 75-87 (1967) · Zbl 0146.32804
[62] Ponzo, P. J.: Nonlinear oscillations in a second order system. Coordinated science laboratory report R-193 (1964)
[63] Ponzo, P. J.; Wax, N.: On certain relaxation oscillations: asymptotic solutions. J. SIAM 13, 740-766 (1965) · Zbl 0136.08201
[64] Ponzo, P. J.; Wax, N.: On certain relaxation oscillations: confining regions. Quat. appl. Math. 23, 215-234 (1965) · Zbl 0132.07103
[65] Reissig, R.; Sansone, G.; Conti, R.: Qualitative theorie nichtlinearer differentialgleichungen. (1963) · Zbl 0114.04302
[66] Reuter, G. E. H.: A boundedness theorem for non-linear differential equations of the second order. Proc. Cambridge phil. Soc. 47, 49-54 (1951) · Zbl 0042.09401
[67] Rosenbrock, H. H.: On the stability of a second-order differential equation. J. London math. Soc. MR 28#4204 39, 77-80 (1964) · Zbl 0123.06201
[68] Ryčkov, G. S.: Certain criteria for the presence and absence of limit cycles in a dynamical system of second order. Sibirsk. mat. \V{z}. MR 34#4604 7, 1425-1431 (1966)
[69] Sansone, G.; Conti, R.: Non-linear differential equations. (1964) · Zbl 0128.08403
[70] Satô, Yûkiti: On a nonlinear differential equation x\ddot{} + $f(x, x\dot{})$x\dot{} + $g(x) =0$. Sci. rep. Saitama univ. Ser. MR 36#6706 5, 57-65 (1967)
[71] Satô, Yûkiti: Periodic solutions of x\ddot{} + $f(x, x\dot{})$x\dot{} + $g(x) =0$. Comment. math. Univ. st. Paul. MR 34#424 14, 97-104 (1966)
[72] Smith, R. A.: Period bound for autonomous Liénard oscillations. Quart. appl. Math. 27, 516-522 (1970) · Zbl 0195.10003
[73] Stevens, R. R.: On the forced Liénard equation. Canad. math. Bull. 12, 79-84 (1969) · Zbl 0231.34028
[74] Švec, M.: Some oscillatory properties of second order nonlinear differential equations. Ann. mat. Pura appl. 77, 179-191 (1967)
[75] Utz, W. R.: Boundedness and periodicity of solutions of the generalized Liénard equation. Ann. mat. Pura appl. 42, 313-324 (1956) · Zbl 0071.30401
[76] Waltman, P.; Bridgland, T. F.: On convergence of solutions of the forced Liénard equation. J. math. Phys. 44, 284-287 (1965) · Zbl 0137.28301
[77] Wax, N.: On some periodic solutions of the Liénard equation. IEEE tran. Circuit theory 13, 419-423 (1966)
[78] Whitbeck, R. F.: Graphical analysis of nonlinear systems. Cornell university research report EERL13 (1964)
[79] Whitbeck, R. F.: Phase plane analysis: the application of Liénard’s construction to a particularly important second order nonlinear differential equation. Information and control 4, 30-47 (1961) · Zbl 0103.06102
[80] Willett, D. W.; Wong, J. S. W.: The boundedness of solutions of the equationx\ddot{} + $f(x, x\dot{}) + g$ (x) = 0. SIAM J. Appl. math. 14, 1084-1098 (1966) · Zbl 0173.34703
[81] Wilson, J. C.: Algebraic periodic solutions of x\ddot{} + $f(x)$ x\dot{} + $g(x) =0$. Contrib. differential equations 3, 1-20 (1964)
[82] Yu, Shu-Hsiang: Existence theorems of limit cycles. Shuxue. jinzhan MR 34#4607 8, 187-194 (1965)
[83] Zeleznov, E. I.: Some sufficient conditions for the existence of limit cycles. Isv. vysš. Učebn. zaved. Matematika MR 24#A1476, 56-59 (1958)