Strejc, Vladimir State space synthesis of discrete linear systems. (English) Zbl 0254.93028 Kybernetika, Praha 8, 83-113 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 Document MSC: 93C05 Linear systems in control theory 93C55 Discrete-time control/observation systems 93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory 49K99 Optimality conditions 49L99 Hamilton-Jacobi theories PDF BibTeX XML Cite \textit{V. Strejc}, Kybernetika 8, 83--113 (1972; Zbl 0254.93028) Full Text: EuDML References: [1] Fan L. T., Wang C. S.: The Discrete Maximum Principle. John Wiley & Sons, New York 1964. · Zbl 0143.42905 [2] Gantmacher F. R.: Theory of Matrices. Vols. I and II, Chelsea Publishing Co., New York 1959. · Zbl 0085.01001 [3] Kalman R. E.: Mathematical Description of Linear Dynamical Systems. J.S.I.A.M. Control, Ser. A, 1 (1963), 2, 159-192. · Zbl 0145.34301 [4] Kučera V.: Optimal Control of Linear Discrete Systems According to Quadratic Cost Function. (in Czech. Language). Research Report, ÚTIA ČSAV, Prague 1971. [5] Ogata K.: State space Analysis of Control Systems. Prentice-Hall, Inc., Englewood Cliffs, N.Y. 1967. · Zbl 0178.09801 [6] Pearson J. B., Sridhar R.: A Discrete Optimal Control Problem. IEEE Transactions on Automatic Control AC-11, (April, 1966), 2. [7] Pontryagin L. S., al.: The Mathematical Theory of Optimal Processes. Interscience Publishers, New York 1962. · Zbl 0102.32001 [8] Sage A. P.: Optimum Systems Control. Prentice-Hall, Inc., Englewood Cliffs, N.Y. 1968. · Zbl 0192.51502 [9] Strejc V.: State Space Equations for Control Theory. (in Czech Language). Supplement of the journal Kybernetika 5 (1969). · Zbl 0682.90023 [10] Tou J. T.: Optimum Design of Digital Control Systems. Academic Press, New York, London 1963. · Zbl 0115.12503 [11] Zadeh L. A., Desoer C. A.: Linear System Theory, The State Space Approach. McGraw-Hill, 1963. · Zbl 1145.93303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.