zbMATH — the first resource for mathematics

Cohomological dimension of local fields. (English) Zbl 0255.12008
11S25 Galois cohomology
11R34 Galois cohomology
13D05 Homological dimension and commutative rings
18G20 Homological dimension (category-theoretic aspects)
Full Text: DOI EuDML
[1] Ax, J.: Proof of some conjectures on cohomological dimension. Proc. Amer. math. Soc.16, 1214-1221 (1965) · Zbl 0142.30001 · doi:10.1090/S0002-9939-1965-0188263-0
[2] Cassels, J.W.S., Fröhlich, Y.: Algebraic number theory. London-New York: Academic Press 1967 · Zbl 0153.07403
[3] Douady, A.: Détermination d’un groupe de Galois. C.r. Acad. Sci., Paris258, 5305-5308 (1964) · Zbl 0146.42105
[4] Greenberg, M.J.: Rational points in Henselian discrete valuation rings. Inst. haut. Étud. sci., Publ. math.31, 59-64, (1966) · Zbl 0146.42201 · doi:10.1007/BF02684802
[5] Hazewinkel: Corps de classe. Appendice in Demazure, M., Gabriel, P., Groupes algébriques Tome I, pp. 648-674. Paris: Masson & Cie. Amsterdam: North-Holland 1970
[6] Lang, S.: On quasi-algebraic closure. Ann. of Math. II. Ser.55, 373-390 (1952) · Zbl 0046.26202 · doi:10.2307/1969785
[7] Nagata, M.: Note on a paper of Lang concerning quasi-algebraic closure. Mem. Coll. Sci., Univ. Kyoto, Ser. A30, 237-241 (1957) · Zbl 0080.03102
[8] Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Math. Nr. 5. Berlin-Heidelberg-New York: Springer 1964 · Zbl 0143.05901
[9] Serre, J.-P.: Corps locaux. Paris: Hermmann 1962 · Zbl 0137.02601
[10] Serre, J.-P.: Sur la dimension cohomologique des groupes profinis. Topology3, 413-420 (1965) · Zbl 0136.27402 · doi:10.1016/0040-9383(65)90006-6
[11] Zariski, O., Samuel, P.: Commutative Algebra I and II. Princeton: Van Nostrand 1958 · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.