×

zbMATH — the first resource for mathematics

Essai d’une théorie noethérienne homogène pour les anneaux commutatifs dont la graduation est aussi générale que possible. (French) Zbl 0255.13003

MSC:
13E99 Chain conditions, finiteness conditions in commutative ring theory
16P10 Finite rings and finite-dimensional associative algebras
13A99 General commutative ring theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] N. BOURBAKI - Algèbre . Chap. II (3e éd.) Hermann - Paris 1962 . · Zbl 0142.00102
[2] N. BOURBAKI - Algèbre Commutative - Chap. III et IV - Hermann - Paris 1961 . · Zbl 0108.04002
[3] M. KRASNER - Théorie des Corps valués (vol. 1, Exposés 1-4). · Zbl 0070.03201
[4] M. KRASNER - Théorie des Corps valués (vol. 2, Exposé 5). Séminaire, année 1953 - 1954 . Secrétariat mathématique, 11 rue Pierre Curie - Paris 1956 . · Zbl 0070.03201
[5] E.S. LJAPIN - Semi groups - American Mathematical Society - Providence - Rhode Island ( 1963 ). MR 29 #4817
[6] O. ZARISKI - P. SAMUEL - Commutative Algebra (vol. I). Van Nostrand Company, Princeton, New-Jersey ( 1958 ). MR 19,833e | Zbl 0081.26501 · Zbl 0081.26501
[7] SAGASTUME BERRA - Systemas de homogeneïdad - Univ. Nac. La Plata. Publ. Fac. Ci. Fisico Mat., Série Segund a - Rev. 6, n^\circ 5, 1959 , pp. 5-17. MR 23 #A2351 | Zbl 0127.24802 · Zbl 0127.24802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.