×

zbMATH — the first resource for mathematics

On the uniqueness of the coefficient ring in a polynomial ring. (English) Zbl 0255.13008

MSC:
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
13B25 Polynomials over commutative rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abhyankar, S, Non prefactorial local rings, Amer. J. math., 89, 1137-1146, (1967) · Zbl 0159.33201
[2] Abhyankar, S, On the valuations centered on a local domain, Amer. J. math., 78, 321-348, (1955) · Zbl 0074.26301
[3] Abhyankar, S, Ramification theoretic methods in algebraic geometry, () · Zbl 0101.38201
[4] Chevalley, C, Introduction to the theory of algebraic functions of one variable, () · Zbl 0045.32301
[5] Cohn, P.M, Bezout rings and their subrings, (), 251-264 · Zbl 0157.08401
[6] Coleman, D; Enochs, E, Polynomial invariance of rings, (), 247-252 · Zbl 0216.33504
[7] \scP. Eakin and K. K. Kubota, A note on the uniqueness of rings of coefficients in polynomial rings, Proc. Amer. Math. Soc., to appear. · Zbl 0235.13009
[8] Evyatar, A; Zaks, A, Rings of polynomials, (), 559-562 · Zbl 0198.06202
[9] Gilmer, R, Multiplicative ideal theory, () · Zbl 0248.13001
[10] Heinzer, W, On Krull overrings of a Noetherian domain, (), 217-222 · Zbl 0181.32403
[11] Igusa, J, On a theorem of Lüroth, Mem. coll. sci., univ. Kyoto, ser. A, 26, 251-253, (1951) · Zbl 0045.32501
[12] Jacobson, N, ()
[13] Kaplansky, I, Commutative rings, (1970), Allyn and Bacon Boston · Zbl 0203.34601
[14] Lang, S, Algebra, (1967), Addison-Wesley Reading, MA
[15] Lang, S; Tate, J, On Chevalley’s proof of Lüroth’s theorem, (), 621-624 · Zbl 0047.03802
[16] Nagata, M, Lectures on the fourteenth problem of Hilbert, (1965), Tata Institute of Fundamental Research Bombay, India · Zbl 0182.54101
[17] Nagata, M, Local rings, (1962), Interscience New York · Zbl 0123.03402
[18] Nagata, M, A theorem on valuation rings and its applications, Nagoya math. J., 29, 85-91, (1967) · Zbl 0146.26302
[19] Seidenberg, A, A note on dimension theory of rings, Pac. J. math., 3, 505-512, (1953) · Zbl 0052.26902
[20] Van der Waerden, B.L, ()
[21] Zariski, O; Samuel, P, Commutative algebra, (1958), Van Nostrand Princeton, NJ, 1960 · Zbl 0121.27901
[22] Jaffard, P, LES systems d’idéaux, (1960), Dunod Paris · Zbl 0101.27502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.