×

zbMATH — the first resource for mathematics

Regular representations of unimodular groups. (English) Zbl 0255.22013

MSC:
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Dixmier, J.: Les algèbres d’op%erateurs dans l’espace hilbertien. Paris: Gauthier-Villars 1957. · Zbl 0088.32304
[2] Dixmier, J.: LesC*-algèbres et leurs representations, 2nd ed. Paris: Gauthier-Villars 1969. · Zbl 0174.18601
[3] Hewitt, E., Ross, K.: Abstract harmonic analysis, vol. I. New York: Academic Press 1963. · Zbl 0115.10603
[4] Kaniuth, E.: Der Typ der regulären Darstellung diskreter Gruppen. Math. Ann.182, 334–339 (1969). · Zbl 0176.30102
[5] Kaniuth, E.: Die Struktur der regulären Darstellung lokalkompakter Gruppen mit invarianter Umgebungsbasis der Eins. Math. Ann.194, 225–248 (1971). · Zbl 0217.36902
[6] Kaplansky, I.: Rings of operators. New York: W. A. Benjamin 1968. · Zbl 0174.18503
[7] Mautner, F. I.: The structure of the regular representation of certain discrete groups. Duke Math. J.17, 437–441 (1950). · Zbl 0040.30002
[8] Segal, I.: An extension of Plancherel’s formula to separable unimodular groups. Ann. of Math.52 (2), 272–292 (1950). · Zbl 0045.38502
[9] Smith, M.: Group algebras. J. of Alg.18, 477–499 (1971). · Zbl 0219.20002
[10] Smith, M.: Regular representation of discrete groups. J. Functional Anal.11, 401–406 (1972). · Zbl 0244.43004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.