×

zbMATH — the first resource for mathematics

Mixed problem for semilinear hyperbolic equation of second order with Dirichlet boundary condition. (English) Zbl 0255.35061

MSC:
35L20 Initial-boundary value problems for second-order hyperbolic equations
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] В. Э. Аболиня А. Д. Мышкис: О смешанной задаче для линейной гиперболической системы на плоскости. Уч. зап. Латвии, гос. унив. XX (1958), 87-104. · Zbl 1225.70002
[2] В. Э. Аболиня А. Д. Мышкис: Смешанная задача для почти линейной гиперболической системы на плоскости. Матем. Сборник 50 (1960), 423-442. · Zbl 1225.94001
[3] R. Courant: Partial Differential Equations. (Russian) Moskva 1964. · Zbl 0121.07801
[4] M. Ikawa: Mixed problem for hyperbolic equation of second order. J. Math. Soc. Japan 20 (1968), 580-608. · Zbl 0172.14304
[5] M. Ikawa: A Mixed Problem for Hyperbolic Equation of Second Order with a First Order Derivative Boundary Condition. Publ. RIMS Kyoto Univ. 5 (1969), 119-147. · Zbl 0207.10101
[6] M. Ikawa: A Mixed Problem for Hyperbolic Equation of Second Order with Non-homogeneous Neumann Type Boundary Condition. Osaka J. Math. 6 (1969), 339-374. · Zbl 0207.10003
[7] M. Ikawa: On the Mixed Problem for Hyperbolic Equation of Second Order with the Neumann Boundary Condition. Osaka J. Math. 7 (1970), 203 - 223. · Zbl 0207.10201
[8] H.-O. Kreiss: Initial Boundary Value Problems for Hyperbolic Systems. Comm. Pure Appl. Math. 9 23 (1970), 277-298. · Zbl 0215.16801
[9] О. А. Ладыжєнская: Смешанная задача для гиперболического уравнения. Москва 1953.
[10] S. Mizohata: Lectures on the Cauchy Problem. Tata Institute of Fundamental Research, Bombay 1965. · Zbl 0176.08502
[11] S. Mizohata: Quelques problèmes au bord, du type mixte, pour des équations hyperboliques. Séminaire sur les équations aux dérivées partielles. Collége de France (1966-67), 23-60.
[12] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia Praha 1967. · Zbl 1225.35003
[13] Б. Л. Рождественский Н. Н. Яненко: Системы квазилинейных уравнений. Москва 1968. · Zbl 1236.41005
[14] R. Sakamoto: Mixed Problems for Hyperbolic Equations I. Energy Inequalities. J. Math. Kyoto Univ. 10 (1970), 349-373. · Zbl 0203.10001
[15] R. Sakamoto: Mixed Problems for Hyperbolic Equations II. J. Math. Kyoto Univ. 10 (1970), 403-417. · Zbl 0206.40101
[16] R. Sakamoto: Iterated Hyperbolic Mixed Problems. Publ. RIMS Kyoto Univ. 6 (1970), 1-42. · Zbl 0225.35065
[17] J. Sather: The initial-boundary value problem for a non-linear hyperbolic equation in relativistic quantum mechanics. J. Math. Mech. vol. 16, 1966/1, 27-50. · Zbl 0141.28803
[18] J. Sather: The existence of a Global Classical Solution of the Initial-Boundary Value Problem for \(\square u+u^{3}=f\). Arch. Rat. Mech. Anal. 22 (1966), 292-307. · Zbl 0141.28802
[19] С Л. Соболев: Некоторые пнименения функционального анализа в математической физике. Новосибирск 1962. · Zbl 1005.68507
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.