×

Sur les déformations équisingulières d’idéaux. (French) Zbl 0256.14006


MSC:

14E15 Global theory and resolution of singularities (algebro-geometric aspects)
13J05 Power series rings
32B05 Analytic algebras and generalizations, preparation theorems
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] HIRONAKA (H.) . - Resolution of singularities of an algebraic variety over a field of characteristic zero , I-II, Annals of Math. , Series 2, t. 79, 1964 , p. 109-326. MR 33 #7333 | Zbl 0122.38603 · Zbl 0122.38603
[2] LÊ DũNG TRÁNG . - Sur les singularités des hypersurfaces complexes (Thèse Sc. math., Paris-VII, 1971 ).
[3] NAGATA (M.) . - Local rings . - New York, Interscience Publishers, 1962 (Interscience Tracts in pure and applied Mathematics, 13). MR 27 #5790 | Zbl 0123.03402 · Zbl 0123.03402
[4] PHAM (F.) . - Déformations équisingulières des idéaux jacobiens de courbes planes , Proceedings of Liverpool singularities Symposium, II [2. 1969 . Liverpool], p. 218-233. - Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 209). Zbl 0229.14006 · Zbl 0229.14006
[5] PHAM (F.) . - Classifications des singularités , 1971 , Faculté des Sciences de Nice (Preprint).
[6] PHAM (F.) . - Remarque sur l’équisingularité universelle , Faculté des Sciences de Nice, 1970 (Preprint).
[7] RISLER (J.-J.) . - Sur l’idéal jacobien d’une courbe plane , Bull. Soc. math. France, t. 99, 1971 , p. 305-311. Numdam | MR 46 #5334 | Zbl 0232.14010 · Zbl 0232.14010
[8] RISLER (J.-J.) . - Algèbre symétrique d’un idéal , Sur quelques problèmes d’algèbre, Montpellier, 1969 . Zbl 0212.38504 · Zbl 0212.38504
[9] ZARISKI (O.) . - Studies in equisingularity , I, Amer. J. of Math., t. 87, 1965 , p. 507-536. MR 31 #2243 | Zbl 0132.41601 · Zbl 0132.41601
[10] ZARISKI (O.) . - Studies in equisingularity , II, Amer. J. of Math., t. 87, 1965 , p. 972-1006. MR 33 #125 | Zbl 0146.42502 · Zbl 0146.42502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.