×

Grassmannians and their Schubert subvarieties are arithmetically Cohen- Macaulay. (English) Zbl 0256.14024


MSC:

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14M15 Grassmannians, Schubert varieties, flag manifolds
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Buchsbaum, D. A.; Rim, D. S., A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc., 111, 197-224 (1964) · Zbl 0131.27802
[2] Chow, W. L., On unmixedness theorem, Amer. J. Math., 86, 799-822 (1964) · Zbl 0146.17203
[3] Eagon, J. A., Ideals generated by the subdeterminants of a matrix, (Thesis (1961), University of Chicago) · Zbl 0167.31202
[4] Eagon, J. A.; Northcott, D. G., Ideals defined by matrices and a certain complex associated with them, (Proc. Roy. Soc. Ser. A, 269 (1962)), 188-204 · Zbl 0106.25603
[5] Eagon, J. A.; Northcott, D. G., Generically acyclic complexes and generically perfect ideals, (Proc. Roy. Soc. Ser. A, 299 (1967)), 147-172 · Zbl 0225.13004
[6] Fogarty, J., Invariant Theory (1969), Benjamin: Benjamin New York · Zbl 0191.51701
[7] Hochster, M., Generically modules are strongly generically perfect, (Proc. London Math. Soc., 23 (1971)), 477-488 · Zbl 0232.13014
[8] Hochster, M.; Eagon, J. A., A class of perfect determinantal ideals, Bull. Amer. Math. Soc., 76, 1026-1029 (1970) · Zbl 0201.37201
[9] Hochster, M.; Eagon, J. A., Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math., 93, 1020-1058 (1971) · Zbl 0244.13012
[10] Hodge, W. V.D; Pedoe, D., (Methods of algebraic Geometry, Vol. 2 (1968), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0157.27501
[11] Igusa, J., On the arithmetic normality of the Grassmann variety, (Proc. Nat. Acad. Sci. U.S.A., 40 (1954)), 309-313 · Zbl 0055.39002
[12] Murthy, M. P., A note on factorail rings, Arch. Math., 15, 418-420 (1964) · Zbl 0123.03401
[13] Northcott, D. G., Additional properties of generically acyclic complexes, Quart. J. Math. Oxford Ser., 20, 65-80 (1969) · Zbl 0203.05301
[14] Northcott, D. G., Grade sensitivity and generic perfection, (Proc. London Math. Soc., 20 (1970)), 597-618 · Zbl 0196.06701
[15] Samuel, P., Lectures on Unique Factorization Domains, (Math. Ser., Vol. 30 (1964), Tata Institute of Fundamental Research: Tata Institute of Fundamental Research Bombay) · Zbl 0184.06601
[16] Sharpe, D. W., On certain polynomial ideals defined by matrices, Quart. J. Math. Oxford Ser., 15, 155-175 (1964) · Zbl 0119.03601
[17] Sharpe, D. W., The syzygies and semi-regularity of certain ideals defined by matrices, (Proc. London Math. Soc., 15 (1965)), 645-679 · Zbl 0136.31803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.