×

zbMATH — the first resource for mathematics

Complex characteristic coordinates and tangential Cauchy-Riemann equations. (English) Zbl 0256.32006

MSC:
32C25 Analytic subsets and submanifolds
35F05 Linear first-order PDEs
32L05 Holomorphic bundles and generalizations
53B99 Local differential geometry
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] P. Garabedian , Stability of Cauchy’s problem in space for analytic systems of arbitrary type , J. Math. Mech. 9 ( 1960 ), 905 - 914 . MR 120460 | Zbl 0196.38901 · Zbl 0196.38901
[2] S.J. Greenfield , Chanchy-Riemann equations in several variables , Ann. Sc. Normale Snp. 22 ( 1968 ), 275 - 314 . Numdam | MR 237816 | Zbl 0159.37502 · Zbl 0159.37502
[3] L. Hörmander , Differential operators of principal type , Math. Ann. 140 ( 1960 ), 124 - 146 . MR 130574 | Zbl 0090.08101 · Zbl 0090.08101
[4] L. Hörmander , The Frobenius-Nirenberg theorem , Arkiv for Math. 5 ( 1965 ), 425 - 432 . MR 178222 | Zbl 0136.09104 · Zbl 0136.09104
[5] II. Lewy , On the local character of the solution of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables , Ann. Math. 64 ( 1956 ), 514 - 522 . MR 81952 | Zbl 0074.06204 · Zbl 0074.06204
[6] L. Nirenberg , A complex Frobenius theorem , Seminar on Analytic Functions, Institute for Advanced Study ( 1951 ), 172 - 189 . Zbl 0099.37502 · Zbl 0099.37502
[7] L. Nirenberg and F. Treves , Solvability of a first order linear partial differential equation , Comm. Pure Appl. Math. 26 ( 1963 ), 331 - 351 . MR 163045 | Zbl 0117.06104 · Zbl 0117.06104
[8] H. Rossi , Differentiable manifolds in complex euclidean space , Proceeding of the international congress of Math. ( 1966 ), 512 - 516 . MR 234499 | Zbl 0192.44002 · Zbl 0192.44002
[9] F. Sommer , Komplex-analytische Blätterung reeller Mannigfaltigkeiten im Cn , Math. Ann. 136 ( 1958 ), 111 - 133 . MR 101924 | Zbl 0092.29902 · Zbl 0092.29902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.