×

zbMATH — the first resource for mathematics

The Cauchy problem for systems in L\(_p\) and L\({_p,\alpha}\). (English) Zbl 0256.35006

MSC:
35E10 Convexity properties of solutions to PDEs and systems of PDEs with constant coefficients
35L45 Initial value problems for first-order hyperbolic systems
35S10 Initial value problems for PDEs with pseudodifferential operators
42A45 Multipliers in one variable harmonic analysis
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beurling, A., Helson, H., Fourier-Stieltjes transforms with bounded powers,Math. Scand. 1 (1953), 120–126. · Zbl 0050.33004
[2] Bourbarki, N.,Theories spectrales, Ch. 1 et 2, ASI, 1332, Hermann, Paris 1967.
[3] Brenner, P., The Cauchy problem for symmetric hyperbolic systems inL p,Math. Scand. 19 (1966), 27–37. · Zbl 0154.11304
[4] –, Power bounded matrices of Fourier-Stieltjes transforms – I,Math. Scand. 22 (1968), 115–129; II,Math. Scand., 25 (1969), 39–48. · Zbl 0174.16502
[5] Calderon, A. P., Zygmund, A., Singular integral operators and differential equations,Amer. J. Math. 79 (1957), 901–921. · Zbl 0081.33502 · doi:10.2307/2372441
[6] Hörmander, L., Estimates for translation invariant operators inL p-spaces,Acta Math. 104 (1960), 93–140. · Zbl 0093.11402 · doi:10.1007/BF02547187
[7] –, Pseudo-differential operators,Comm. Pure Appl. Math. 18 (1965), 501–517. · Zbl 0125.33401 · doi:10.1002/cpa.3160180307
[8] – Pseudo-differential operators, and hypoelliptic equations,Amer. Math. Soc. Proc. Symp. Pure Math. 10 (1968), 138–183.
[9] Kahane, J. P., Sur certaines classes de séries de Fourier absolument convergentes,J. Math. Pures Appl. 35 (1956), 249–259. · Zbl 0072.06004
[10] Kasahara, K., Yamaguti, M., Sur le systeme hyperbolique a coefficients constants,Proc. Jap. Acad. 35 (1959), 547–550. · Zbl 0098.29701 · doi:10.3792/pja/1195524212
[11] –, Strongly hyperbolic systems of linear partial differential equations with constant coefficients,Mem. Coll. Sic. Univ. Kyoto, Ser. A. Math. 33 (1960/61), 1–23. · Zbl 0098.29702
[12] Kopáček., J., On pairs of matrices with propertyL, Comm. Math. Univ. carolinae 8 (1967), 453–457. · Zbl 0178.03303
[13] –, On the Cauchy problem for linear hyperbolic systems inL p,Comm. Math. Univ. Carolinae 8 (1967), 459–462. · Zbl 0164.12201
[14] –, OnL p-estimates for the Cauchy problem for hyperbolic systems,Comm. Math. Univ. Carolinae 10 (1969), 237–239. · Zbl 0176.40303
[15] Kreiss, H. O., Ueber sachgemässe Cauchy probleme,Math. Scand. 13 (1963), 109–128. · Zbl 0145.13303
[16] Lanconelli E., Valutazioni inL p(Rn) dela soluzione del problema di Cauchy per l’equazione di Schrödinger,Boll. Un. Mat. Ital. 4 (1968), 591–607. · Zbl 0167.10401
[17] Leblanc, N., Un resultat de type Van der Corput,C. R. Acad. Sci. Paris 267 (1968), 886–887. · Zbl 0165.15802
[18] DeLeuuw, K., OnL p multipliers,Annals Math. 81 (1965), 364–379. · Zbl 0171.11803 · doi:10.2307/1970621
[19] Littman, W., The wave operator andL p-norms,J. Math. Mech. 12 (1963), 55–68. · Zbl 0127.31705
[20] –, Fourier transforms of surface carried measures and differentiability of surface averages,Bull. Amer. Math. Soc. 69 (1963), 766–770. · Zbl 0143.34701 · doi:10.1090/S0002-9904-1963-11025-3
[21] Löfström, J., Besov spaces in the theory of approximation,Ann. Mat. Pura Appl. 85 (1970), 93–184. · Zbl 0193.41401 · doi:10.1007/BF02413532
[22] Muravei, L. A., The Cauchy problem for the wave-equation inL p-norm (Russian),Trudy Mat. Inst. Steklova 53 (1968), 172–180. · Zbl 0197.36702
[23] Strang, G., On strong hyperbolicity,J. Math Kyota Univ. 6 (1967), 397–417. · Zbl 0174.15103
[24] Taibleson, M. H., On the theory of Lipschitz-spaces of distributions on Euclideann-space,J. Math. Mech., I: 13 (1964), 407–408, II: 14 (1965), 821–840, III: 15 (1966), 973–982.
[25] Thomée, V., Stability theory for partial difference operators,SIAM Rev. 11 (1969), 152–195. · Zbl 0176.09101 · doi:10.1137/1011033
[26] Zygmund, A.,Trigonometric series I, Cambridge University Press, London (1959). · Zbl 0085.05601
[27] Sjöstrand, S., On the Riesz means of the solutions of the Schrödinger equation,Annali Scoula Norm. Sup. Pisa 24 (1970), 331–348. · Zbl 0201.14901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.