×

zbMATH — the first resource for mathematics

Sobolev and mean-value inequalities on generalised submanifolds of R\(^n\). (English) Zbl 0256.53006

MSC:
53A05 Surfaces in Euclidean and related spaces
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
52A40 Inequalities and extremum problems involving convexity in convex geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Theory of minimal surfaces and a counter-example to the Bernstein conjecture in high dimensions, Notes of Lectures held at the Courant Institute, New York University, 1970.
[2] Bombieri, Arch. Rat. Mech. Anal. 32 pp 255– (1969)
[3] and , Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
[4] Miranda, Rend. Sem. Mat. Univ. Padova 38 (1967)
[5] Morrey, Univ. of California Publ. in Mathematics, new ser. 1 pp 1– (1943)
[6] Osserman, Bull. Amer. Math. Soc. 75 pp 1092– (1969)
[7] Thesis, University of Adelaide, 1971.
[8] Interior gradient bounds for non-uniformly elliptic equations. (To appear.)
[9] Global estimates of Hölder continuity for a class of divergence form elliptic equations. (To appear.)
[10] Gradient estimates and mean curvature. (To appear.)
[11] Trudinger, Proc. Nat. Acad. Sci. U.S.A. 69 pp 821– (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.