On steady state minimum variance control strategy. (English) Zbl 0256.93070


93E20 Optimal stochastic control
93E15 Stochastic stability in control theory
Full Text: EuDML


[1] Åström K. J.: Introduction to stochastic control theory. Academic Press, N.Y. 1970.
[2] Strejc V.: Příspěvek k teorii syntézy číslicové regulace při kompenzaci náhodné poruchy. (Contribution to the theory of digital regulation synthesis for compensation of random disturbances). In Problémy kybernetiky, NČSAV, Prague 1965.
[3] Цыпкин Я. 3.: Теория линейных импульсных систем. (Theory of linear sampled-data systems). Физматгиз, Москва 1963. · Zbl 1145.93303
[4] Chang S. L.: Synthesis of optimum control systems. McGraw-Hill, N.Y. 1961.
[5] Волгин Л. Н.: Статистический расчет дискретных автоматических систем. (Statistical design of discrete automatic systems). Известия АН ССР, Энергетика и автоматика (1960), 4. · Zbl 1004.90500
[6] Meditch J. S.: Stochastic Optimal Linear Estimation and Control. McGraw-Hill, N.Y. 1969. · Zbl 0225.93045
[7] Гихман И. И., Скороход А. В.: Введение в теорию случайных процессов. (Introduction to the theory of random processes). Изд. Наука, Москва 1965 (see also · Zbl 1099.01519
[8] Krýže J., Fořtová A., Peterka V.: Numerické řešení Wienerovy-Hopfovy rovnice při identitifikaci regulovaných soustav. (Numerical solution of Wiener-Hopf equation in system identification). Kybernetika 2 (1966), 4.
[9] Peterka V., Halousková A.: Tally estimate of Åström model for stochastic systems. Identication and Process Parameter Estimation, 2nd Prague IFAC Symposium, paper 2.3.
[10] Nekolný J.: Numerická interpolace a náhrada analytických funkcí. (Numerical interpolation and approximation of analytic functions). Report No 357, ÚTIA ČSAV, Prague 1971.
[11] Záruba M.: Algoritmizace syntézy číslicové regulace stacionárních stochastických soustav. (Algorithmization of digital regulation synthesis for stationary stochastic systems). Report No 386, ÚTIA ČSAV, Prague 1971.
[12] Peterka V., Ullrich M.: Matematické modelování stochastických soustav. (Mathematical modelling of stochastic systems). Proceedings of the symposium ”Cybernetical Aspects of Identification”, Slovak Cybernetical Society, Vysoké Tatry, 1971.
[13] Åström K. J., Bohlin T.: Numerical identification of linear dynamic system from normal operating records. P. H. Hammond (ed.); Theory of self-adaptive control systems, Plenum-Press, N.Y. 1966, 94-111.
[14] Åström K. J.: Control Problems in Papermaking. Proc. IBM Sci. Comput. Symp. Control Theory and Appl. 1964.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.