×

zbMATH — the first resource for mathematics

On a class of regular rings that are elementary divisor rings. (English) Zbl 0257.16015

MSC:
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
16S50 Endomorphism rings; matrix rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. F. Arens andI. Kaplansky, Topological representations of algebras. Trans. Amer. Math. Soc.63, 457-481 (1948).
[2] G. Ehrlich, Unit-regular rings. Portugal. Math.27, 209-212 (1969). · Zbl 0201.03901
[3] L. Fuchs, On a substitution property for modules. Monatsh. Math.75, 198-204 (1971). · Zbl 0225.16013
[4] L. Gillman andM. Henriksen, Some remarks on elementary divisor rings. Trans. Amer. Math. Soc.82, 362-365 (1956). · Zbl 0073.02203
[5] I. Kaplansky, Elementary divisors and modules. Trans. Amer. Math. Soc.66, 464-491 (1949). · Zbl 0036.01903
[6] I. Kaplansky, Topological representations of algebras II. Trans. Amer. Math. Soc.68, 62-75 (1950). · Zbl 0035.30301
[7] J.Lambek, Lectures on Rings and Modules. Waltham 1966. · Zbl 0143.26403
[8] P.Ribenboim, Rings and Modules. New York 1969. · Zbl 0198.05601
[9] L. N. Vasershtein, Stable ranks of rings and dimensionality of topological spaces. Functional Anal. Appl.5, 17-27 (1971); translation 102-110. · Zbl 0239.16028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.