Freyd, P. J.; Kelly, G. M. Categories of continuous functors. I. (English) Zbl 0257.18005 J. Pure Appl. Algebra 2, 169-191 (1972); erratum ibid. 4, 121 (1974). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 ReviewsCited in 159 Documents MSC: 18A25 Functor categories, comma categories 18A05 Definitions and generalizations in theory of categories 18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) 18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Barr, M., Coequalizers and free triples, Math. Z., 116, 307-322 (1970) · Zbl 0194.01701 [2] M. Barr, Factorizations, generators and rank, privately circulated manuscript.; M. Barr, Factorizations, generators and rank, privately circulated manuscript. [3] Day, B. J., A reflection theorem for closed categories, J. Pure Appl. Algebra, 2, 1-11 (1972) · Zbl 0236.18004 [4] Day, B. J.; Kelly, G. M., Enriched functor categories, (Lecture Notes in Math., 106 (1969), Springer: Springer Berlin) · Zbl 0214.03202 [5] Freyd, P. J., Abelian categories (1964), Harper and Row: Harper and Row New York · Zbl 0121.02103 [6] Gabriel, P.; Ulmer, F., Lecture Notes in Math., 221 (1971), Springer: Springer Berlin · Zbl 0225.18004 [7] Isbell, J., Subobjects, adequacy, completeness and categories of algebras, Rozprawy Mat., 36, 1-32 (1964) · Zbl 0133.26703 [8] Kelly, G. M., Monomorphisms, epimorphisms, and pull-backs, J. Austr. Math. Soc., 9, 124-142 (1969) · Zbl 0169.32604 [9] Kennison, J. F., On limit-preserving functors, Illinois J. Math., 12, 616-619 (1968) · Zbl 0169.02301 [10] Lambek, J., Completions of categories, (Lecture Notes in Math., 24 (1966), Springer: Springer Berlin), 1-70 · Zbl 0143.02802 [11] Ringel, C. M., Diagonalisierungspaare I, Math. Z., 117, 249-266 (1970) · Zbl 0206.30002 [12] Schubert, H., Kategorien III (1971), Springer: Springer Berlin [13] Spanier, E., Quasi-topologies, Duke Math. J., 30, 1-14 (1963) · Zbl 0114.38702 [14] Ulmer, F., Locally α-presentable and locally α-generated categories, (Rept. Midwest Category Seminar 5. Rept. Midwest Category Seminar 5, Lecture Notes in Math., 195 (1971), Springer: Springer Berlin) · Zbl 0225.18005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.