×

Categories of continuous functors. I. (English) Zbl 0257.18005

J. Pure Appl. Algebra 2, 169-191 (1972); erratum ibid. 4, 121 (1974).

MSC:

18A25 Functor categories, comma categories
18A05 Definitions and generalizations in theory of categories
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barr, M., Coequalizers and free triples, Math. Z., 116, 307-322, (1970) · Zbl 0194.01701
[2] M. Barr, Factorizations, generators and rank, privately circulated manuscript.
[3] Day, B.J., A reflection theorem for closed categories, J. pure appl. algebra, 2, 1-11, (1972) · Zbl 0236.18004
[4] Day, B.J.; Kelly, G.M., Enriched functor categories, () · Zbl 0214.03202
[5] Freyd, P.J., Abelian categories, (1964), Harper and Row New York · Zbl 0121.02103
[6] Gabriel, P.; Ulmer, F., Lecture notes in math., 221, (1971), Springer Berlin
[7] Isbell, J., Subobjects, adequacy, completeness and categories of algebras, Rozprawy mat., 36, 1-32, (1964) · Zbl 0133.26703
[8] Kelly, G.M., Monomorphisms, epimorphisms, and pull-backs, J. austr. math. soc., 9, 124-142, (1969) · Zbl 0169.32604
[9] Kennison, J.F., On limit-preserving functors, Illinois J. math., 12, 616-619, (1968) · Zbl 0169.02301
[10] Lambek, J., Completions of categories, (), 1-70
[11] Ringel, C.M., Diagonalisierungspaare I, Math. Z., 117, 249-266, (1970) · Zbl 0206.30002
[12] Schubert, H., Kategorien III, (1971), Springer Berlin
[13] Spanier, E., Quasi-topologies, Duke math. J., 30, 1-14, (1963) · Zbl 0114.38702
[14] Ulmer, F., Locally α-presentable and locally α-generated categories, () · Zbl 0225.18005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.