Rutter, Edgar A. jun. Torsion theories over semiperfect rings. (English) Zbl 0257.18022 Proc. Am. Math. Soc. 34, 389-395 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 Documents MSC: 18E40 Torsion theories, radicals 16L60 Quasi-Frobenius rings × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J. S. Alin and E. P. Armendariz, \?\?\?-classes over perfect rings, J. Austral. Math. Soc. 11 (1970), 499 – 503. · Zbl 0221.16006 [2] Goro Azumaya, Completely faithful modules and self-injective rings, Nagoya Math. J. 27 (1966), 697 – 708. · Zbl 0144.02303 [3] Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466 – 488. · Zbl 0094.02201 [4] Robert L. Bernhardt, Splitting hereditary torsion theories over semiperfect rings, Proc. Amer. Math. Soc. 22 (1969), 681 – 687. · Zbl 0182.05801 [5] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305 [6] Spencer E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223 – 235. · Zbl 0138.01801 [7] Vlastimil Dlab, A characterization of perfect rings, Pacific J. Math. 33 (1970), 79 – 88. · Zbl 0209.07201 [8] J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249 – 1259. · Zbl 0142.28002 [9] Joachim Lambek, Lectures on rings and modules, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1966. · Zbl 0365.16001 [10] B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373 – 387. · Zbl 0171.29303 · doi:10.1016/0021-8693(66)90028-7 [11] Yuzo Utumi, Self-injective rings, J. Algebra 6 (1967), 56 – 64. · Zbl 0161.03803 · doi:10.1016/0021-8693(67)90013-0 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.