Measurability of functions of two variables. (English) Zbl 0257.28007


28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence
28A35 Measures and integrals in product spaces
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
Full Text: EuDML


[1] ДЫНКИН Є. Б.: Основания теории марковских процессов. Москва 1959. · Zbl 1234.81002
[2] HALMOS P. R.: Measure Theory. Princeton 1968.
[3] KELLEY. J. L.: General Topology. · Zbl 0181.25401
[4] MAHOWALD M.: On the measurability of functions in two variables. Proc. Amer. Math. Soc. 13, 1962, 410-411. · Zbl 0111.25601
[5] MARCZEWSKI E., RYLL-NARDZEWSKI C.: Mesurabilité des fonctions des plusieurs variables. Ann. Soc. polon. Math. 25, 1951, 145-154. · Zbl 0048.28604
[6] MICHAEL J. H., RENNIE B. C.: Measurability of functions of two variables. J.Austral. Math. Soc. 1, 1959, 21-26. · Zbl 0094.25903
[7] NEUBRUNN T.: Merateľnos\? niektorých funkcií na kartézskych súčinoch. Mat.-fyz. časop. 10, 1960, 216-221.
[8] NEUBRUNN T.: Príspevok k merateľným a metrickým priestorom. Habilitačná práca. Bratislava 1963.
[9] NEUBRUNN T., SMÍTAL J., ŠALÁT T.: On certain properties characterizing locally separable metric spaces. Časop. p\?stov. mat. 92, 1967, 157-161. · Zbl 0171.43701
[10] URSELL H. D.: Some methods of proving measurability. Fundam. math. 32, 1939, 311-330. · Zbl 0021.11302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.