×

Korteweg-de Vries equation: a completely integrable Hamiltonian system. (English. Russian original) Zbl 0257.35074

Funct. Anal. Appl. 5, 280-287 (1972); translation from Funkts. Anal. Prilozh. 5, No. 4, 18-27 (1971).

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35J10 Schrödinger operator, Schrödinger equation
35P25 Scattering theory for PDEs
Full Text: DOI

References:

[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, ”Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett.,19, 1095-1097 (1967). · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[2] R. M. Miura, C. S. Gardner, and M. D. Kruskal, ”Korteweg-de Vries equation and generalizations, II. Existence of conservation laws and constants of motion,” J. Math. Phys.,9, No. 8, 1204-1209 (1968). · Zbl 0283.35019 · doi:10.1063/1.1664701
[3] M. D. Kruskal, R. M. Miura, C. S. Gardner, and N. J. Zabusky, ”Korteweg-de Vries equation and generalizations, V. Uniqueness and nonexistence of polynomial conservation laws,” J. Math. Phys.,11, No. 3, 952-960 (1970). · Zbl 0283.35022 · doi:10.1063/1.1665232
[4] P. D. Lax, ”Integrals of nonlinear equations and solitary waves” Comm. Pure Appl. Math.,21, No. 2, 467-490 (1968). · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[5] L. D. Faddeev, ”Properties of the S-matrix of the one-dimensional Schroedinger equation,” Trudy Matem. in-ta im. V. A. Steklova,73, 314-336 (1964). · Zbl 0145.46702
[6] J. Kay and H. E. Moses, ”The determination of the scattering potential from the spectral measure function, III” Nuovo Cimento,3, No. 2, 277-304 (1956).
[7] L. D. Landau and E. M. Lifshits, Mechanics, Addison-Wesley, Reading, Mass (1960).
[8] V. I. Arnol’d, Lectures on Classical Mechanics [in Russian], Moscow State Univ., Moscow (1968).
[9] I. M. Gel’fand and B. M. Levitan, ”On a simple identity for the characteristic values of a differential operator of the second order,” Dokl. Akad. Nauk SSSR,88, No. 4, 593-596 (1953).
[10] I. M. Gel’fand, ”On identities for characteristic values of a differentiable operator of the second order,” Usp. Mat. Nauk,11, No. 1, 191-198 (1956).
[11] V. S. Buslaev and L. D. Faddeev, ”On formulas for traces of a Sturm-Liouville singular differential operator,” Dokl. Akad. Nauk SSSR, 132, No. 1, 13-16 (1960). · Zbl 0129.06501
[12] V. E. Zakharov, ”A kinetic equation for solitons,” Zh. Éksp. Teor. Fiz.,60, No. 3, 993-1000 (1971).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.