×

Harmonic synthesis for subgroups. (English) Zbl 0257.43007


MSC:

43A45 Spectral synthesis on groups, semigroups, etc.
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] [1] , Factorization in group algebras, Duke Math. J. 26, (1959), 199-205. · Zbl 0085.10201
[2] [2] , Les algèbres d’opérateurs dans l’espace Hilbertien, Gauthier-Villars, Paris, 2ème édition 1969. · Zbl 0175.43801
[3] [3] , Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 2ème édition 1969. · Zbl 0174.18601
[4] [4] and , Lp-multipliers supported by subgroups, Proc. Amer. Math. Soc. 34 (1972), 475-478. · Zbl 0253.43010
[5] [5] , L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. · Zbl 0169.46403
[6] [6] , Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki 367 (1969/1970). · Zbl 0264.43006
[7] [7] , Translation invariant operators in Lp, Duke Math. J. 32 (1965), 495-502. · Zbl 0142.10403
[8] [8] , Remarques sur la Note précédente de M. Varopoulos, C.R. Acad. Sci. Paris A260 (1965), 6001-6004. · Zbl 0135.35404
[9] [9] , Le rapport entre les algèbres Ap d’un groupe et d’un sous-groupe, C.R. Acad. Sci. Paris A271 (1970), 244-246. · Zbl 0195.13803
[10] [10] , Synthèse spectrale pour les sous-groupes par rapport aux algèbres Ap, C.R. Acad. Sci. Paris A271 (1970), 316-318. · Zbl 0195.13802
[11] [1] , Q-variétés analytiques et groupes de Lie, C.R. Acad. Sc. Paris, t. 272, série A (1971), 1094-1096. · Zbl 0216.15606
[12] [12] , Induced representations of locally compact groups, Annals of Math. 55 (1952), 101-139. · Zbl 0046.11601
[13] [13] , A counterexample to discrete spectral synthesis, Compositio Math. 14 (1960), 269-273. · Zbl 0099.10203
[14] [14] , Classical Harmonic Analysis and Locally Compact Groups, Oxford 1968. · Zbl 0165.15601
[15] [15] , , and , Local units in L1(G), Proc. Amer. Math. Soc. 31 (1972), 312-313. · Zbl 0252.43013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.