Atiyah, Michael; Bott, Raoul; Patodi, V. K. On the heat equation and the index theorem. (English) Zbl 0257.58008 Invent. Math. 19, 279-330 (1973). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 219 Documents MSC: 58J20 Index theory and related fixed-point theorems on manifolds 35K05 Heat equation 53C20 Global Riemannian geometry, including pinching 53C55 Global differential geometry of Hermitian and Kählerian manifolds PDFBibTeX XMLCite \textit{M. Atiyah} et al., Invent. Math. 19, 279--330 (1973; Zbl 0257.58008) Full Text: DOI EuDML References: [1] Atiyah, M.F., Singer, I.M.: The index of elliptic operators, I. Ann. of Math.87, 484-530 (1968). · Zbl 0164.24001 · doi:10.2307/1970715 [2] Atiyah, M.F., Singer, I.M.; The index of elliptic operators, III. Ann. of Math.87, 546-604 (1968). · Zbl 0164.24301 · doi:10.2307/1970717 [3] Atiyah, M.F., Singer, I.M.: The index of elliptic operators, IV. Ann. of Math.93, 119-138 (1971). · Zbl 0212.28603 · doi:10.2307/1970756 [4] Atiyah, M.F., Singer, I.M.: The index of elliptic operators, V. Ann. of Math.93, 139-149 (1971). · Zbl 0212.28603 · doi:10.2307/1970757 [5] Atiyah, M.F., Singer, I.M.: The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc.69, 422-433 (1963). · Zbl 0118.31203 · doi:10.1090/S0002-9904-1963-10957-X [6] Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes, I. Ann. of Math.86, 374-407 (1967). · Zbl 0161.43201 · doi:10.2307/1970694 [7] Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes, II. Ann. of Math.88, 451-491 (1968). · Zbl 0167.21703 · doi:10.2307/1970721 [8] Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology3, Suppl. 1, 3-38 (1964). [9] Atiyah, M.F., Hirzebruch, F.: Spin-manifolds and group actions. Essays on Topology and related topics dedicated to G. de Rham. Berlin-Heidelberg-New York: Springer 1970. · Zbl 0193.52401 [10] Berger, M.: Le spectre d’une variété riemannienne. Lecture Notes in Mathematics194. Berlin-Heidelberg-New York: Springer 1971. [11] Bott, R.: Vector fields and characteristic numbers. Mich. Math. J.14, 231-244 (1967). · Zbl 0145.43801 · doi:10.1307/mmj/1028999721 [12] Bott, R.: The periodicity theorem for the classical groups and some of its applications. Advances in Math.4, 353-411 (1970). · Zbl 0231.55010 · doi:10.1016/0001-8708(70)90030-7 [13] Eisenhart, L.: Introduction to Differential Geometry. Princeton: University Press 1940. · Zbl 0026.35001 [14] Gel’fand, I.M.: The cohomology of some infinite-dimensional Lie algebras. Proceedings of International Congress, Nice,I, 95-110 (1970). [15] Gilkey, P.: Curvature and the eigenvalues of the Laplacian for elliptic complexes. Advances in Mathematics (to appear). · Zbl 0259.58010 [16] Hirzebruch, F.: Topological methods in algebraic geometry. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0138.42001 [17] Hitchin, N.: Harmonic Spinors (to appear). · Zbl 0284.58016 [18] McKean, H. P., Jr., Singer, I. M.: Curvature and the eigenvalues of the Laplacian. J. Differential Geometry1, 43-69 (1967). · Zbl 0198.44301 [19] Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian J. Math.1, 242-256 (1949). · Zbl 0041.42701 · doi:10.4153/CJM-1949-021-5 [20] Palais, R.: Seminar on the Atiyah-Singer Index Theorem. Ann. of Math. Studies57, Princeton, 1965. · Zbl 0137.17002 [21] Patodi, V.K.: Curvature and the eigenforms of the Laplace operator. J. Diff. Geometry5, 233-249 (1971). · Zbl 0211.53901 [22] Patodi, V.K.: An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Diff. Geometry5, 251-283 (1971). · Zbl 0219.53054 [23] Seeley, R.T.: Complex powers of an elliptic operator. Proc. Sympos. Pure Math.10, Amer. Math. Soc. 288-307, 1967. · Zbl 0159.15504 [24] Weyl, H.: The classical groups, Princeton University Press, Princeton, 1946. · Zbl 1024.20502 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.