×

Eigenvalue approximation by the finite element method. (English) Zbl 0257.65086


MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
Full Text: DOI

References:

[1] G. Strang and G. Fix; G. Strang and G. Fix · Zbl 0356.65096
[2] Courant, R., Bull. Amer. Math. Soc., 40, 1-23 (1943)
[3] Birkhoff, G.; deBoor, C.; Swartz, B.; Wendroff, B., SIAM J. Numer. Anal., 13, 188-203 (1966) · Zbl 0143.38002
[4] Ciarlet, P. G.; Schultz, M. H.; Varga, R. S., Numer. Math., 12, 120-133 (1968) · Zbl 0181.18303
[5] Pierce, J. G.; Varga, R. S., SIAM J. Numer. Anal., 9, 137-151 (1972) · Zbl 0301.65063
[6] Glasstone, S.; Edlund, M. C., The Elements of Nuclear Reactor Theory (1952), Von Nostrand: Von Nostrand New York · Zbl 0049.27809
[7] Vianikko, G. M., USSR Comput. Math. and Math. Phys., 7, 18-32 (1967)
[8] Vianikko, G. M., Sh. vȳschisl. Mat. mat. Fiz., 4, 405-425 (1964)
[9] Vianikko, G. M., Amer. Math. Soc. Transl., 86, 249-259 (1970)
[10] Krasnesol’skii, M. A.; Vainikko, G. M., Approximate solution of Operator Equations (1969), Nauka: Nauka Moscow, (Russian) · Zbl 0194.17902
[11] Fix, G., On the approximation of eigenvalues arising from non-self-adjoint problems, University of Maryland Report (1972)
[12] I. Babuska; I. Babuska · Zbl 0268.65052
[13] Lions, J. L.; Magenes, E., Problèmes aux limites non homogènes et applications (1968), Dunod: Dunod Paris · Zbl 0165.10801
[14] Kellogg, B., On the Poisson equation with intersecting interfaces, (Technical Note BN-643 (1970), University of Maryland) · Zbl 0307.35038
[15] Babuska, I., Numer. Math., 16, 322-333 (1971) · Zbl 0214.42001
[16] Habetler, G. J.; Martino, M. A., Existence theorems and spectral theory for the multigroup diffusion model, (Proc. of Symposia in Applied Math., 11 (1961), A.M.S: A.M.S Providence)
[17] Yosida, K., Functional Analysis (1965), Springer-Verlag: Springer-Verlag New York · Zbl 0126.11504
[18] Babuska, I., The finite element method with Lagrangian multipliers, University of Maryland Report BN-724 (1972)
[19] Fix, G.; Gulati, S.; Wahoff, G. I., On the use of singular functions with the finite element method, J. of Comp. Physics (1972), to appear
[20] Dunford, N.; Schwartz, J., (Linear Operations, Vol. II (1963), Interscience: Interscience New York)
[21] Kato, T., Perturbation Theory of Linear Operators (1966), Springer-Verlag: Springer-Verlag New York · Zbl 0148.12601
[22] Bramble, J. H.; Osborn, J. E., Univ. of Wisconsin M.R.C. Report 1232 (June 1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.