×

Rank test of hypothesis of randomness against a group of regression alternatives. (English) Zbl 0258.62025


MSC:

62G10 Nonparametric hypothesis testing

References:

[1] G. K. Bhattacharyya R. A. Johnson: Nonparametric tests for shift at unknown time point. Annals of Math. Stat. 39 (1968) No. 5, 1731-1743. · Zbl 0167.47203
[2] H. Chernoff S. Zacks: Estimating the current mean of a normal distribution which is subjected to changes in time. Annals of Math. Stat. 35 (1964), 999-1018. · Zbl 0218.62033 · doi:10.1214/aoms/1177700517
[3] J. Hájek Z. Šidák: Theory of rank tests. Academia, Publishing house of the Czechoslovak Academy of Sciences, Praha 1967. · Zbl 0161.38102
[4] M. Hušková: Asymptotic distribution of simple linear rank statistics used for testing symmetry hypotheses. (Czech.) Thesis, Prague 1968.
[5] M. Hušková: Asymptotic distribution of simple linear rank statistic for testing of symmetry. Z. Wahrscheinlichkeitstheorie. Geb. 14, (1970), 308-322. · Zbl 0217.51101 · doi:10.1007/BF00533668
[6] Z. Kander S. Zacks: Test procedure for possible changes in parameters of statistical distribution occurring at unknown time point. Annals of Math. Stat. 37(1966), 1196-1210. · Zbl 0143.41002 · doi:10.1214/aoms/1177699265
[7] E. L. Lehmann: Testing statistical hypotheses. J. Wiley, New York, 1959. · Zbl 0089.14102
[8] E. L. Lehmann: Some concepts of independence. Annals of Math. Stat. 37 (1966) No. 2, 1137-1153. · Zbl 0146.40601 · doi:10.1214/aoms/1177699260
[9] E. S. Page: Continuous inspection schemes. Biometrika 41 (1954), 100-116. · Zbl 0056.38002 · doi:10.1093/biomet/41.1-2.100
[10] E. S. Page: A test for a change in parameter occurring at an unknown point. Biometrika 42 (1955), 523-526. · Zbl 0067.11602 · doi:10.1093/biomet/42.3-4.523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.