×

The numerical solution of Fredholm integral equations of the second kind with singular kernels. (English) Zbl 0258.65117


MSC:

65R20 Numerical methods for integral equations
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Anselone, P. M.: Convergence and error bounds for approximate solutions of integral and operator equations. In: Error in digital computation, vol. II, ed. by L. B. Rall, 231-252. New York: John Wiley and Sons 1965. · Zbl 0158.34102
[2] Anselone, P. M.: Collectively compact operator approximation theory. Prentice-Hall, 1971. · Zbl 0228.47001
[3] Atkinson, K.: Extensions of the Nystrom method for the numerical solution of linear integral equations of the second kind. Math. Research Center Technical Rep. #686, Univ. of Wisconsin, Madison, Wis. 1966.
[4] Atkinson, K.: The numerical solution of Fredholm integral equations of the second kind. SIAM Num. Anal. Jour.4, 337-348 (1967). · Zbl 0155.47404
[5] Brakhage, H.: Über die numerische Behandlung von Integralgleichungen nach der Quadraturformelmethode. Numerische Math.2, 183-196 (1960). · Zbl 0142.11903
[6] Bückner, H.: Numerical methods for integral equations. In: Survey of numerical analysis, 439-467, ed. by John Todd. New York: McGraw-Hill 1962.
[7] Dejon, B., Walther, A.: General report on the numerical treatment of integral and integro-differential equations. Symposium on the numerical treatment of ordinary differential equations, integral equations, and integro-differential equations, 647-671. Rome 1960. · Zbl 0107.33503
[8] Garwick, J. V.: On the numerical solution of integral equations. Den 11 te Skandinaviske Matimatiker Kongress, 1949, 113-121. Oslo: Johan Grundt Tanums Forlag 1952.
[9] Gilbert, R. P.: The construction of solutions for boundary value problems by function theoretic methods. SIAM Jour. of Math. Anal.1, 96-114 (1970). · Zbl 0206.40406
[10] Gilbert, R. P.: Integral operator methods for approximating solutions of Dirichlet problems, to appear in the proceedings of the conference on ?Numerische Methoden der Approximationstheorie?. Oberwolfach, Germany 1969. Appendix by K. Atkinson.
[11] Hillstrom, K. E.: Comparison of several adaptive Newton-Cotes quadrature routines in evaluating definite integrals with peaked integrands. Argonne National Lab. Tech. Rep. ANL-7511, 1968. · Zbl 0204.48502
[12] Kadner, H.: Die numerische Behandlung von Integralgleichungen nach der Kollokationsmethode. Numerische Math.10, 241-260 (1967). · Zbl 0155.47403
[13] Kantorovich, L. V., Akilov, G. P.: Functional analysis in normal spaces. Transl. by D. E. Brown. New York: Pergamon Press 1964. · Zbl 0127.06104
[14] Kontorovich, L. V., Krylov, V. I.: Approximate methods of higher analysis. Transl. by C. D. Benster. New York: Interscience 1958. · Zbl 0083.35301
[15] Kussmaul, R.: Ein numerisches Verfahren zur Lösung des Neumannschen Außenraumproblems für die Helmholtzsche Schwingungsgleichung. Computing4, 246-273 (1969). · Zbl 0187.40203
[16] Kussmaul, R., Werner, P.: Fehlerabschätzung für ein numerisches Verfahren zur Auflösung linearer Integralgleichungen mit schwachsingulären Kernen. Computing3, 22-46 (1968). · Zbl 0184.38803
[17] Lynn, M. S., Timlake, W. P.: The numerical solution of singular integral equations of potential theory. Numerische Math.11, 77-98 (1968). · Zbl 0162.47701
[18] Taylor, A. E.: Introduction to functional analysis. New York: John Wiley and Sons 1958. · Zbl 0081.10202
[19] Young, A.: The application of approximate product integration to the numerical solution of integral equations. Proc. Roy. Soc. London (A)224, 561-573 (1954). · Zbl 0055.35803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.