×

zbMATH — the first resource for mathematics

Stationary scattering theory for time-dependent Hamiltonians. (English) Zbl 0261.35067

MSC:
35P25 Scattering theory for PDEs
47F05 General theory of partial differential operators (should also be assigned at least one other classification number in Section 47-XX)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Dirac, P. A. M.: The principles of quantum mechanics. 4th edition. Oxford University Press 1958 · Zbl 0080.22005
[2] Dunford, N., Schwartz, J. T.: Linear operators, Part I, New York: Interscience 1958 · Zbl 0084.10402
[3] Gohberg, I. C., Krein, M. G.: Introduction to the theory of non-self adjoint operators. Am. Math. Soc. Translations of Mathematical Monographs, Vol. 18, Providence, 1969 · Zbl 0181.13504
[4] Halmos, P. R.: A Hilbert space problem book. Princeton: Van Nostrand 1967 · Zbl 0144.38704
[5] Hille, E., Phillips, R. S.: Functional analysis and semi-groups. Am. Math. Soc. Colloq. Publ. Vol. 31, 1957 · Zbl 0078.10004
[6] Kato, T.: Wave operators and similarity for some nonselfadjoint operators. Math. Ann.162, 258-279 (1966) · Zbl 0139.31203 · doi:10.1007/BF01360915
[7] Kato, T.: Linear evolution equations of ?hyperbolic? type. J. Fac. Sci. Univ. Tokyo Sect. I,17, Parts 1 and 2; 241-258 (1970) · Zbl 0222.47011
[8] Kato, T., Kuroda, S. T.: The abstract theory of scattering. Rocky Mountain J. Math1, 127-171 (1971) · Zbl 0241.47005 · doi:10.1216/RMJ-1971-1-1-127
[9] Kuroda, S. T.: Some remarks on scattering for Schroedinger operators. J. Fac. Sci. Univ. Tokyo, Sec. I,17, parts 1 and 2; 315-329 (1970) · Zbl 0222.47004
[10] Naimark, M. A., Fomin, S. V.: Continuous direct sums of Hilbert spaces and some of their applications. Am. Math. Soc. Translations. Ser. 2, Vol. 5, 35-66
[11] Schweber, S. S.: An introduction to relativistic quantum field theory. Evanston, Ill.: Row-Peterson 1961 · Zbl 0111.43102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.