Ciarlet, P. G.; Raviart, P.-A. Interpolation theory over curved elements, with applications to finite element methods. (English) Zbl 0261.65079 Computer Methods appl. Mech. Engin. 1, 217-249 (1972). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 113 Documents MSC: 65N35 Spectral, collocation and related methods for boundary value problems involving PDEs PDF BibTeX XML Cite \textit{P. G. Ciarlet} and \textit{P. A. Raviart}, Comput. Methods Appl. Mech. Eng. 1, 217--249 (1972; Zbl 0261.65079) Full Text: DOI References: [1] Argyris, J. H., Energy theorems and structural analysis, part I: General theory, Aircraft Engineering, 27, 125-134 (1955) · Zbl 0161.21601 [3] Argyris, J. H.; Fried, I., The LUMINA element for the matrix displacement method (Lagrangian Interpolation), The Aeronautical Journal of the Royal Aeronautical Society, 72, 514-517 (1968) [4] Argyris, J. H.; Scharpf, D. W., The HERMES 8 element for the matrix displacement method (Hermitian Interpolation), The Aeronautical Journal of the Royal Aeronautical Society, 72, 613-617 (1968) [5] Argyris, J. H.; Scharpf, D. W., The curved tetrahedronal and triangular elements TEC and TRIG for the matrix displacement method, part I: Small displacements, part II: Large displacements, The Aeronautical Journal of the Royal Aeronautical Society, 73, 55-65 (1969) [6] Nečas, J., Les méthodes directes en théorie des équations elliptiques (1967), Masson: Masson Paris · Zbl 1225.35003 [7] Zienkiewicz, O. C., The finite element method in engineering science (1971), McGraw-Hill: McGraw-Hill London · Zbl 0237.73071 [8] Argyris, J. H.; Balmer, H.; Doltsinis, J.; Willam, K., Finite element analysis of thermomechanical problems, (Air Force third conference on matrix methods in structural mechanics. Air Force third conference on matrix methods in structural mechanics, WPAFB, Dayton, October 19th-21st (1971)), To be published in Proceedings. · Zbl 0435.73086 [9] Ergatoudis, I.; Irons, B. M.; Zienkiewicz, O. C., Curved, isoparametric, “quadrilateral” elements for finite element analysis, Int. J. Solids Structures, 4, 31-42 (1968) · Zbl 0152.42802 [10] Strang, G.; Berger, A. E., The change in solution due to change in domain (1971), Private communication [11] Fried, I., Discretization and round-off errors in the finite element analysis of elliptic boundary value problems and eigen-value problems, (Ph.D. Dissertation (1971), Institute of Technology: Institute of Technology Massachussetts) [15] Bramble, J. H.; Hilbert, S. R., Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math., 16, 362-369 (1971) · Zbl 0214.41405 [16] Cartan, H., Calcul différentiel (1967), Hermann: Hermann Paris · Zbl 0156.36102 [17] Ciarlet, P. G.; Wagschal, C., Multipoint Taylor formulas and applications to the finite element method, Numer. Math., 17, 84-100 (1971) · Zbl 0199.50104 [18] Argyris, J. H., Some results on the free-free oscillations of aircraft type structures, (IUTAM Symposium on Recent Advances in the Mechanics of Linear Vibrations. IUTAM Symposium on Recent Advances in the Mechanics of Linear Vibrations, Revue Francaise de Meécanique, No. 15, 3e trimestre (1965)), Also · Zbl 0251.73030 [19] Argyris, J. H., Continua and discontinua, (Opening address to the International conference on matrix methods of structural mechanics. Opening address to the International conference on matrix methods of structural mechanics, Dayton, Ohio, Wright-Patterson U.S.A.F.Base, October 26th, 1965, (1967)), 1-198, published in the Proceedings of the Conference by United States Government [20] Felippa, C. A.; Clough, R. W., The finite element method in solid mechanics, (Birkhoff, G.; Varga, R. S., Numerical solution of field problems in continuum physics (Proc. Symp. A.M.S. and S I.A.M. Durham, N.C., April 5-6, 1968) (1970), American Mathematical Society: American Mathematical Society Providence, R.I), 210-252, SIAM-AMS Proceedings II [21] Nachbin, L., Topology on spaces of holomorphic mappings (1969), Springer-Verlag: Springer-Verlag Berlin · Zbl 0172.39902 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.