Numerical study of viscous flow in a cavity. (English) Zbl 0261.76024


76D99 Incompressible viscous fluids
65N99 Numerical methods for partial differential equations, boundary value problems
Full Text: DOI


[1] Burggraf, O., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 113-151 (1966)
[2] Pan, F.; Acrivos, A., Steady flows in rectangular cavities, J. Fluid Mech., 28, 643-655 (1967)
[3] Greenspan, D., Numerical studies of prototype cavity flow problems, Comput. J., 12, 89-94 (1969) · Zbl 0164.56102
[4] Runchal, A. K.; Spalding, D. B.; Wolfshtein, M., Numerical solution of the elliptic equations for transport of vorticity, heat, and matter in two-dimensional flow, Phys. Fluid., 12, II-21-II-28 (1969) · Zbl 0211.29403
[5] Kawaguti, M., Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity, J. Phys. Soc. Japan, 16, 2307-2315 (1961) · Zbl 0126.42403
[6] Batchelor, G. K., On steady laminar flow with closed streamlines at large Reynolds numbers, J. Fluid Mech., 1, 177-190 (1956) · Zbl 0070.42004
[7] Mills, R. D., Numerical solutions of the viscous flow equations for a class of closed flows, J. Roy. Aero. Soc., 69, 714-718 (1965)
[8] Moffatt, H. K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1-18 (1964) · Zbl 0118.20501
[9] Thom, A.; Apelt, C. J., Field Computations in Engineering and Physics (1961), Van Nostrand: Van Nostrand London · Zbl 0122.12302
[10] Greenspan, D., Lectures on the Numerical Solution of Linear, Singular, and Nonlinear Differential Equations, ((1968), Prentice Hall: Prentice Hall New York) · Zbl 0134.33003
[11] Runchal, A. K.; Wolfshtein, M., Numerical integration procedure for the steady state Navier-Stokes equations, J. M. E. Sci., 11, 445-453 (1969) · Zbl 0242.76012
[12] Gosman, A. D.; Pan, W. M.; Runchal, A. K.; Spalding, D. B.; Wolfshtein, M., Heat and Mass Transfer in Recirculating flows (1969), Academic Press: Academic Press New York · Zbl 0239.76001
[13] Stone, H. L., Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Num. Anal., 5, 530-558 (1968) · Zbl 0197.13304
[14] Birkhoff, G.; Varga, R. S.; Young, D. M., Alternating direction implicit methods, (Alt, F. L.; Rubinoff, M., Advances in Computers, Vol. 3 (1962), Academic Press: Academic Press New York), 189-273 · Zbl 0111.31402
[15] Torrance, K.; Davis, R.; Eike, K.; Gill, P.; Gutman, D.; Hsui, A.; Lyons, S.; Zien, H., Cavity flows driven by buoyancy and shear, J. Fluid Mech., 51, 221-231 (1972)
[16] R. D. Richtmyer and K. W. Morton; R. D. Richtmyer and K. W. Morton · Zbl 0155.47502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.